• Title/Summary/Keyword: meta-heuristic search

Search Result 105, Processing Time 0.023 seconds

Optimal Design of a Hybrid Structural Control System using a Self-Adaptive Harmony Search Algorithm (자가적응 화음탐색 알고리즘을 이용한 복합형 최적 구조제어 시스템 설계)

  • Park, Wonsuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.301-308
    • /
    • 2018
  • This paper presents an optimal design method of a hybrid structural control system considering multi-hazard. Unlike a typical structural control system in which one system is designed for one specific type of hazard, a simultaneous optimal design method for both active and passive control systems is proposed for the mitigation of seismic and wind induced vibration responses of structures. As a numerical example, an optimal design problem is illustrated for a hybrid mass damper(HMD) and 30 viscous dampers which are installed on a 30 story building structure. In order to solve the optimization problem, a self-adaptive Harmony Search(HS) algorithm is adopted. Harmony Search algorithm is one of the meta-heuristic evolutionary methods for the global optimization, which mimics the human player's tuning process of musical instruments. A self-adaptive, dynamic parameter adjustment algorithm is also utilized for the purpose of broad search and fast convergence. The optimization results shows that the performance and effectiveness of the proposed system is superior with respect to a reference hybrid system in which the active and passive systems are independently optimized.

Ant Colony System Considering the Iteration Search Frequency that the Global Optimal Path does not Improved (전역 최적 경로가 향상되지 않는 반복 탐색 횟수를 고려한 개미 집단 시스템)

  • Lee, Seung-Gwan;Lee, Dae-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.1
    • /
    • pp.9-15
    • /
    • 2009
  • Ant Colony System is new meta heuristic for hard combinatorial optimization problem. The original ant colony system accomplishes a pheromone updating about only the global optimal path using global updating rule. But, If the global optimal path is not searched until the end condition is satisfied, only pheromone evaporation happens to no matter how a lot of iteration accomplishment. In this paper, the length of the global optimal path does not improved within the limited iterations, we evaluates this state that fall into the local optimum and selects the next node using changed parameters in the state transition rule. This method has effectiveness of the search for a path through diversifications is enhanced by decreasing the value of parameter of the state transition rules for the select of next node, and escape from the local optima is possible. Finally, the performance of Best and Average_Best of proposed algorithm outperforms original ACS.

Ant Colony System for Vehicle Routing Problem with Time Window (시간제약이 있는 차량경로문제에 대한 개미군집 시스템 해법)

  • Lee, Sang-Heon;Lee, Seung-Won
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.1
    • /
    • pp.153-165
    • /
    • 2009
  • This paper apollos an ant colony system (ACS) for the vehicle routing problem with time window (VRPTW). The VRPTW is a generalization of the VRP where the service of a customer can begin within the time windows defined by the earliest and latest times when the customer will permit the start of service. The ACS has been applied effectively in geographical environment such as TSP or VRP by meta-heuristic that imitate an ant's biologic special duality in route construction, 3 saving based ACS (SB-ACS) is introduced and its solution is improved by local search. Through iterative precesses, the SB-ACS is shown to drive the best solution. The algorithm has been tested on 56 Solomon benchmarking problems and compared to the best-known solutions on literature. Experimental results shows that SB-ACS algorithm could obtain food solution in total travel distance minimization.

Observer-Teacher-Learner-Based Optimization: An enhanced meta-heuristic for structural sizing design

  • Shahrouzi, Mohsen;Aghabaglou, Mahdi;Rafiee, Fataneh
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.537-550
    • /
    • 2017
  • Structural sizing is a rewarding task due to its non-convex constrained nature in the design space. In order to provide both global exploration and proper search refinement, a hybrid method is developed here based on outstanding features of Evolutionary Computing and Teaching-Learning-Based Optimization. The new method introduces an observer phase for memory exploitation in addition to vector-sum movements in the original teacher and learner phases. Proper integer coding is suited and applied for structural size optimization together with a fly-to-boundary technique and an elitism strategy. Performance of the proposed method is further evaluated treating a number of truss examples compared with teaching-learning-based optimization. The results show enhanced capability of the method in efficient and stable convergence toward the optimum and effective capturing of high quality solutions in discrete structural sizing problems.

Optimum design of axially symmetric cylindrical reinforced concrete walls

  • Bekdas, Gebrail
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.361-375
    • /
    • 2014
  • The main aim of this paper is to investigate the relationship between thickness and height of the axially symmetric cylindrical reinforced concrete (RC) walls by the help of a meta-heuristic optimization procedure. The material cost of the wall which includes concrete, reinforcement and formwork, was chosen as objective function of the optimization problem. The wall thickness, compressive strength of concrete and diameter of reinforcement bars were defined as design variables and tank volume, radius and height of the wall, loading condition and unit cost of material were defined as design constants. Numerical analyses of the wall were conducted by using superposition method (SPM) considering ACI 318-Building code requirements for structural concrete. The optimum wall thickness-height relationship was investigated under three main cases related with compressive strength of concrete and density of the stored liquid. According to the results, the proposed method is effective on finding the optimum design with minimum cost.

Optimum design of braced steel frames via teaching learning based optimization

  • Artar, Musa
    • Steel and Composite Structures
    • /
    • v.22 no.4
    • /
    • pp.733-744
    • /
    • 2016
  • In this study, optimum structural designs of braced (non-swaying) planar steel frames are investigated by using one of the recent meta-heuristic search techniques, teaching-learning based optimization. Optimum design problems are performed according to American Institute of Steel Construction- Allowable Stress Design (AISC-ASD) specifications. A computer program is developed in MATLAB interacting with SAP2000 OAPI (Open Application Programming Interface) to conduct optimization procedures. Optimum cross sections are selected from a specified list of 128W profiles taken from AISC. Two different braced planar frames taken from literature are carried out for stress, geometric size, displacement and inter-storey drift constraints. It is concluded that teaching-learning based optimization presents robust and applicable optimum solutions in multi-element structural problems.

Reduced record method for efficient time history dynamic analysis and optimal design

  • Kaveh, A.;Aghakouchak, A.A.;Zakian, P.
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.639-663
    • /
    • 2015
  • Time history dynamic structural analysis is a time consuming procedure when used for large-scale structures or iterative analysis in structural optimization. This article proposes a new methodology for approximate prediction of extremum point of the response history via wavelets. The method changes original record into a reduced record, decreasing the computational time of the analysis. This reduced record can be utilized in iterative structural dynamic analysis of optimization and hence significantly reduces the overall computational effort. Design examples are included to demonstrate the capability and efficiency of the Reduced Record Method (RRM) when utilized in optimal design of frame structures using meta-heuristic algorithms.

Optimal Operation Method of Microgrid System Using DS Algorithm (DS 알고리즘을 이용한 마이크로 그리드 최적운영기법)

  • Park, Si-Na;Rhee, Sang-Bong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.5
    • /
    • pp.34-40
    • /
    • 2015
  • This paper presents an application of Differential Search (DS) meta-heuristic optimization algorithm for optimal operation of micro grid system. DS algorithm has the benefit of high convergence rate and precision compared to other optimization methods. The micro grid system consists of a wind turbine, a diesel generator, and a fuel cell. The simulation is applied to micro grid system only. The wind turbine generator is modeled by considering the characteristics of variable output. One day load data which is divided every 20 minute and wind resource for wind turbine generator are used for the study. The method using the proposed DS algorithm is easy to implement, and the results of the convergence performance are better than other optimization algorithms.

A comparison of three multi-objective evolutionary algorithms for optimal building design

  • Hong, Taehoon;Lee, Myeonghwi;Kim, Jimin;Koo, Choongwan;Jeong, Jaemin
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.656-657
    • /
    • 2015
  • Recently, Multi-Objective Optimization of design elements is an important issue in building design. Design variables that considering the specificities of the different environments should use the appropriate algorithm on optimization process. The purpose of this study is to compare and analyze the optimal solution using three evolutionary algorithms and energy modeling simulation. This paper consists of three steps: i)Developing three evolutionary algorithm model for optimization of design elements ; ii) Conducting Multi-Objective Optimization based on the developed model ; iii) Conducting comparative analysis of the optimal solution from each of the algorithms. Including Non-dominated Sorted Genetic Algorithm (NSGA-II), Multi-Objective Particle Swarm Optimization (MOPSO) and Random Search were used for optimization. Each algorithm showed similar range of result data. However, the execution speed of the optimization using the algorithm was shown a difference. NSGA-II showed the fastest execution speed. Moreover, the most optimal solution distribution is derived from NSGA-II.

  • PDF

A Tabu Search Algorithm for the Vehicle Routing Problem with Time Window and Dock Capacity Constraints (시간제약과 하역장 용량제약이 있는 차량경로문제에 대한 타부탐색 알고리즘)

  • Zang Heejeong;Lee Kyungsik;Choi Eunjeung;Park Sungsoo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.4
    • /
    • pp.45-60
    • /
    • 2005
  • We consider a vehicle routing problem with time window and dock capacity constraints (VRPTD). In most traditional models of vehicle routing problems with time window (VRPTW), each customer must be assigned to only one vehicle route. However demand of a customer may exceed the capacity of one vehicle, hence at least two vehicles may need to visit the customer We assume that each customer has Its own dock capacity. Hence, the customer can be served by only a limited number of vehicles simultaneously. Given a depot, customers, their demands, their time windows and dock capacities, VRPTD is to get a set of feasible routes which pass the depot and some customers such that all demands of each customer are satisfied Since VRPTD is NP-hard, a meta-heuristic algorithm is developed. The algorithm consists of two Procedures : the route construction procedure and the route scheduling procedure. We tested the algorithm on a number of instances and computational results are reported.