• Title/Summary/Keyword: meta-heuristic search

Search Result 105, Processing Time 0.031 seconds

Development of Self-Adaptive Meta-Heuristic Optimization Algorithm: Self-Adaptive Vision Correction Algorithm (자가 적응형 메타휴리스틱 최적화 알고리즘 개발: Self-Adaptive Vision Correction Algorithm)

  • Lee, Eui Hoon;Lee, Ho Min;Choi, Young Hwan;Kim, Joong Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.314-321
    • /
    • 2019
  • The Self-Adaptive Vision Correction Algorithm (SAVCA) developed in this study was suggested for improving usability by modifying four parameters (Modulation Transfer Function Rate, Astigmatic Rate, Astigmatic Factor and Compression Factor) except for Division Rate 1 and Division Rate 2 among six parameters in Vision Correction Algorithm (VCA). For verification, SAVCA was applied to two-dimensional mathematical benchmark functions (Six hump camel back / Easton and fenton) and 30-dimensional mathematical benchmark functions (Schwefel / Hyper sphere). It showed superior performance to other algorithms (Harmony Search, Water Cycle Algorithm, VCA, Genetic Algorithms with Floating-point representation, Shuffled Complex Evolution algorithm and Modified Shuffled Complex Evolution). Finally, SAVCA showed the best results in the engineering problem (speed reducer design). SAVCA, which has not been subjected to complicated parameter adjustment procedures, will be applicable in various fields.

Harmony Search for Virtual Machine Replacement (화음 탐색법을 활용한 가상머신 재배치 연구)

  • Choi, Jae-Ho;Kim, Jang-Yeop;Seo, Young Jin;Kim, Young-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.26-35
    • /
    • 2019
  • By operating servers, storage, and networking devices, Data centers consume a lot of power such as cooling facilities, air conditioning facilities, and emergency power facilities. In the United States, The power consumed by data centers accounted for 1.8% of total power consumption in 2004. The data center industry has evolved to a large scale, and the number of large hyper scale data centers is expected to grow in the future. However, as a result of examining the server share of the data center, There is a problem where the server is not used effectively such that the average occupancy rate is only about 15% to 20%. To solve this problem, we propose a Virtual Machine Reallocation research using virtual machine migration function. In this paper, we use meta-heuristic for effective virtual machine reallocation. The virtual machine reallocation problem with the goal of maximizing the idle server was designed and solved through experiments. This study aims to reducing the idle rate of data center servers and reducing power consumption simultaneously by solving problems.

A Tabu Search Algorithm for Network Design Problem in Wireless Mesh Networks (무선 메쉬 네트워크에서 네트워크 설계 문제를 위한 타부 서치 알고리즘)

  • Jang, Kil-woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.6
    • /
    • pp.778-785
    • /
    • 2020
  • Wireless mesh networks consist of mesh clients, mesh routers and mesh access points. The mesh router connects wireless network services to the mesh client, and the mesh access point connects to the backbone network using a wired link and provides Internet access to the mesh client. In this paper, a limited number of mesh routers and mesh access points are used to propose optimization algorithms for network design for wireless mesh networks. The optimization algorithm in this paper has been applied with a sub-subscription algorithm, which is one of the meta-heuristic methods, and is designed to minimize the transmission delay for the placement of mesh routers and mesh access points, and produce optimal results within a reasonable time. The proposed algorithm was evaluated in terms of transmission delay and time to perform the algorithm for the placement of mesh routers and mesh access points, and the performance evaluation results showed superior performance compared to the previous meta-heuristic methods.

HS Implementation Based on Music Scale (음계를 기반으로 한 HS 구현)

  • Lee, Tae-Bong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.5
    • /
    • pp.299-307
    • /
    • 2022
  • Harmony Search (HS) is a relatively recently developed meta-heuristic optimization algorithm, and various studies have been conducted on it. HS is based on the musician's improvisational performance, and the objective variables play the role of the instrument. However, each instrument is given only a sound range, and there is no concept of a scale that can be said to be the basis of music. In this study, the performance of the algorithm is improved by introducing a scale to the existing HS and quantizing the bandwidth. The introduced scale was applied to HM initialization instead of the existing method that was randomly initialized in the sound band. The quantization step can be set arbitrarily, and through this, a relatively large bandwidth is used at the beginning of the algorithm to improve the exploration of the algorithm, and a small bandwidth is used to improve the exploitation in the second half. Through the introduction of scale and bandwidth quantization, it was possible to reduce the algorithm performance deviation due to the initial value and improve the algorithm convergence speed and success rate compared to the existing HS. The results of this study were confirmed by comparing examples of optimization values for various functions with the conventional method. Specific comparative values were described in the simulation.

Harmony Search Algorithm-Based Approach For Discrete Size Optimization of Truss Structures

  • Lee Kang-Seok;Kim Jeong-Hee;Choi Chang-Sik;Lee Li-Hyung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.351-358
    • /
    • 2005
  • Many methods have been developed and are in use for structural size optimization problems, In which the cross-sectional areas or sizing variables are usually assumed to be continuous. In most practical structural engineering design problems, however, the design variables are discrete. This paper proposes an efficient optimization method for structures with discrete-sized variables based on the harmony search (HS) meta-heuristic algorithm. The recently developed HS algorithm was conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary In this paper, a discrete search strategy using the HS algorithm is presented in detail and its effectiveness and robustness, as compared to current discrete optimization methods, are demonstrated through a standard truss example. The numerical results reveal that the proposed method is a powerful search and design optimization tool for structures with discrete-sized members, and may yield better solutions than those obtained using current method.

  • PDF

Ontology Alignment by Using Discrete Cuckoo Search (이산 Cuckoo Search를 이용한 온톨로지 정렬)

  • Han, Jun;Jung, Hyunjun;Baik, Doo-Kwon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.12
    • /
    • pp.523-530
    • /
    • 2014
  • Ontology alignment is the way to share and reuse of ontology knowledge. Because of the ambiguity of concept, most ontology alignment systems combine a set of various measures and complete enumeration to provide the satisfactory result. However, calculating process becomes more complex and required time increases exponentially since the number of concept increases, more errors can appear at the same time. Lately the focus is on meta-matching using the heuristic algorithm. Existing meta-matching system tune extra parameter and it causes complex calculating, as a consequence, the results in the various data of specific domain are not good performed. In this paper, we propose a high performance algorithm by using DCS that can solve ontology alignment through simple process. It provides an efficient search strategy according to distribution of Levy Flight. In order to evaluate the approach, benchmark data from the OAEI 2012 is employed. Through the comparison of the quality of the alignments which uses DCS with state of the art ontology matching systems.

An Improved Particle Swarm Optimization Algorithm for Care Worker Scheduling

  • Akjiratikarl, Chananes;Yenradee, Pisal;Drake, Paul R.
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.2
    • /
    • pp.171-181
    • /
    • 2008
  • Home care, known also as domiciliary care, is part of the community care service that is a responsibility of the local government authorities in the UK as well as many other countries around the world. The aim is to provide the care and support needed to assist people, particularly older people, people with physical or learning disabilities and people who need assistance due to illness to live as independently as possible in their own homes. It is performed primarily by care workers visiting clients' homes where they provide help with daily activities. This paper is concerned with the dispatching of care workers to clients in an efficient manner. The optimized routine for each care worker determines a schedule to achieve the minimum total cost (in terms of distance traveled) without violating the capacity and time window constraints. A collaborative population-based meta-heuristic called Particle Swarm Optimization (PSO) is applied to solve the problem. A particle is defined as a multi-dimensional point in space which represents the corresponding schedule for care workers and their clients. Each dimension of a particle represents a care activity and the corresponding, allocated care worker. The continuous position value of each dimension determines the care worker to be assigned and also the assignment priority. A heuristic assignment scheme is specially designed to transform the continuous position value to the discrete job schedule. This job schedule represents the potential feasible solution to the problem. The Earliest Start Time Priority with Minimum Distance Assignment (ESTPMDA) technique is developed for generating an initial solution which guides the search direction of the particle. Local improvement procedures (LIP), insertion and swap, are embedded in the PSO algorithm in order to further improve the quality of the solution. The proposed methodology is implemented, tested, and compared with existing solutions for some 'real' problem instances.

Reviews of Bus Transit Route Network Design Problem (버스 노선망 설계 문제(BTRNDP)의 고찰)

  • Han, Jong-Hak;Lee, Seung-Jae;Lim, Seong-Su;Kim, Jong-Hyung
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.3 s.81
    • /
    • pp.35-47
    • /
    • 2005
  • This paper is to review a literature concerning Bus Transit Route Network Design(BTRNDP), to describe a future study direction for a systematic application for the BTRNDP. Since a bus transit uses a fixed route, schedule, stop, therefore an approach methodology is different from that of auto network design problem. An approach methodology for BTRNDP is classified by 8 categories: manual & guideline, market analysis, system analytic model. heuristic model. hybrid model. experienced-based model. simulation-based model. mathematical optimization model. In most previous BTRNDP, objective function is to minimize user and operator costs, and constraints on the total operator cost, fleet size and service frequency are common to several previous approach. Transit trip assignment mostly use multi-path trip assignment. Since the search for optimal solution from a large search space of BTRNDP made up by all possible solutions, the mixed combinatorial problem are usually NP-hard. Therefore, previous researches for the BTRNDP use a sequential design process, which is composed of several design steps as follows: the generation of a candidate route set, the route analysis and evaluation process, the selection process of a optimal route set Future study will focus on a development of detailed OD trip table based on bus stop, systematic transit route network evaluation model. updated transit trip assignment technique and advanced solution search algorithm for BTRNDP.

Unit Commitment Using Parallel Tabu Search (병렬 타부 탐색법을 이용한 발전기 기동정지계획)

  • Kim, H.S.;Mun, K.J.;Cho, D.H.;Hwang, G.H.;Park, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.84-88
    • /
    • 2001
  • This paper proposes a method of solving a unit commitment problem using parallel tabu search (PTS). The TS is efficient optimization method using meta-heuristic. In this paper, to reduce the computation time for evaluating the neighborhoods, an evaluating method only on changed part and a path relinking method as diversification strategy are proposed. To show the usefulness of the proposed method, we simulated for 10 units system and 110 units system. Numerical results show improvements in the generation costs and the computation time compared with conventional methods. Numerical results show improvements in the generation cost and the computation time compared to previously obtained results.

  • PDF

A Hybrid Metaheuristic for the Series-parallel Redundancy Allocation Problem in Electronic Systems of the Ship

  • Son, Joo-Young;Kim, Jae-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.341-347
    • /
    • 2011
  • The redundancy allocation problem (RAP) is a famous NP.complete problem that has beenstudied in the system reliability area of ships and airplanes. Recently meta-heuristic techniques have been applied in this topic, for example, genetic algorithms, simulated annealing and tabu search. In particular, tabu search (TS) has emerged as an efficient algorithmic approach for the series-parallel RAP. However, the quality of solutions found by TS depends on the initial solution. As a robust and efficient methodology for the series-parallel RAP, the hybrid metaheuristic (TSA) that is a interactive procedure between the TS and SA (simulated annealing) is developed in this paper. In the proposed algorithm, SA is used to find the diversified promising solutions so that TS can re-intensify search for the solutions obtained by the SA. We test the proposed TSA by the existing problems and compare it with the SA and TS algorithm. Computational results show that the TSA algorithm finds the global optimal solutions for all cases and outperforms the existing TS and SA in cases of 42 and 56 subsystems.