• 제목/요약/키워드: meta-heuristic optimization algorithm

검색결과 123건 처리시간 0.025초

Harmony Search 알고리즘의 수렴성 개선에 관한 연구 (Study on Improvement of Convergence in Harmony Search Algorithms)

  • 이상경;고광은;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제21권3호
    • /
    • pp.401-406
    • /
    • 2011
  • 복잡해진 최적화문제를 전통적인 방법보다 효율적으로 해결하기위해 유전알고리즘이나 개미군집화, 하모니서치알고리즘과 같은 다양한 메타휴리스틱이 개발되었다. 그 중에서 하모니 서치알고리즘이 다른 메타휴리스틱알고리즘보다 좋은 결과를 보이고 있다. 하모니 서치 알고리즘은 음악을 작곡할 때 아름다운 소리를 내는 하모니를 찾는 과정을 모방했다. 성능은 하모니 메모리에서 선택하는 비율인 HMCR값과 하모니 메모리에서 선택된 값의 조정 비율을 결정하는 PAR값에 따라 달라지는 것으로 알려져 있다. 다르게 말하면 두 변수의 기반이 되는 하모니 메모리의 사용방법의 문제로 볼 수 있다. 본 논문은 설정한 기간 동안 더 좋은 최적해를 찾지 못할 경우 하모니 메모리의 일부를 좋은 하모니로 구성되게 수정하는 방법을 제안했다. 테스트 함수를 이용한 검증 실험결과에서 하모니 메모리를 수정할 경우 정확도 변화가 적어 신뢰성 있는 정확도를 보였으며, Iteration이 짧더라도 최적값에 근접한 값을 찾았다.

최대 반복 횟수 없이 튜닝에 기반을 둔 HS 최적화 구현 (HS Optimization Implementation Based on Tuning without Maximum Number of Iterations)

  • 이태봉
    • 전기학회논문지P
    • /
    • 제67권3호
    • /
    • pp.131-136
    • /
    • 2018
  • Harmony search (HS) is a relatively recently developed meta-heuristic optimization method imitating the music improvisation process where musicians improvise their instruments' pitches searching for a perfect state of harmony. In the conventional HS algorithm, it is necessary to determine the maximum number of iterations with some algorithm parameters. However, there is no criterion for determining the number of iterations, which is a very difficult problem. To solve this problem, a new method is proposed to perform the algorithm without setting the maximum number of iterations in this paper. The new method allows the algorithm to be performed until the desired tuning is achieved. To do this, a new variable bandwidth is introduced. In addition, the types and probability of harmonies composed of variables is analyzed to help to decide the value of HMCR. The performance of the proposed method is investigated and compared with classical HS. The experiments conducted show that the new method generally outperformed conventional HS when applied to seven benchmark problems.

HS 최적화 알고리즘 성능 향상에 관한 연구 (A Study on the Performance Improvement of Harmony Search Optimization Algorithm)

  • 이태봉
    • 한국항행학회논문지
    • /
    • 제25권5호
    • /
    • pp.403-408
    • /
    • 2021
  • Harmony Search(HS) 알고리즘은 음악 즉흥 연주 프로세스에서 영감을 받은 메타 휴리스틱 최적화 알고리즘으로 다양한 최적화 문제를 해결하는 데 성공적으로 적용되어 왔다. 본 논문에서는 HS의 성능을 더욱 향상시키기 위해 FSH(Fast Harmony Search) 알고리즘을 제안하였다. 이를 위해 본 논문에서는 HM을 이용하여 목적 변수의 경곗값을 새롭게 정의하여 독립적인 두 개의 화음개선과정을 하나로 통합하는 방법을 제안하였다. 그 결과 알고리즘의 처리 시간이 단축되고 대역폭의 명시적인 결정이 더이상 필요하지 않게 되었다. 또한, 무작위 선택의 활용능력이 향상되었다. 수치적 예시 결과는 제안된 알고리즘이 기존의 HS에 비해 더 나은 해를 찾을 수 있으며 속도 또한 빠르다는 것을 보여준다.

골리앗 크레인의 공주행 거리와 와이어 교체 최소를 고려한 최적 블록 리프팅 계획 (Optimal Block Lifting Scheduling Considering the Minimization of Travel Distance at an Idle State and Wire Replacement of a Goliath Crane)

  • 노명일;이규열
    • 한국CDE학회논문집
    • /
    • 제15권1호
    • /
    • pp.1-10
    • /
    • 2010
  • Recently, a shipyard is making every effort to efficiently manage equipments of resources such as a gantry crane, transporter, and so on. So far block lifting scheduling of a gantry crane has been manually performed by a manager of the shipyard, and thus it took much time to get scheduling results and moreover the quality of them was not optimal. To improve this, a block lifting scheduling system of the gantry crane using optimization techniques was developed in this study. First, a block lifting scheduling problem was mathematically formulated as a multi-objective optimization problem, considering the minimization of travel distance at an idle state and wire replacement during block lifting. Then, to solve the problem, a meta-heuristic optimization algorithm based on the genetic algorithm was proposed. To evaluate the efficiency and applicability of the developed system, it was applied to an actual block lifting scheduling problem of the shipyard. The result shows that blocks can be efficiently lifted by the gantry crane using the developed system, compared to manual scheduling by a manager.

Unsupervised Segmentation of Images Based on Shuffled Frog-Leaping Algorithm

  • Tehami, Amel;Fizazi, Hadria
    • Journal of Information Processing Systems
    • /
    • 제13권2호
    • /
    • pp.370-384
    • /
    • 2017
  • The image segmentation is the most important operation in an image processing system. It is located at the joint between the processing and analysis of the images. Unsupervised segmentation aims to automatically separate the image into natural clusters. However, because of its complexity several methods have been proposed, specifically methods of optimization. In our work we are interested to the technique SFLA (Shuffled Frog-Leaping Algorithm). It's a memetic meta-heuristic algorithm that is based on frog populations in nature searching for food. This paper proposes a new approach of unsupervised image segmentation based on SFLA method. It is implemented and applied to different types of images. To validate the performances of our approach, we performed experiments which were compared to the method of K-means.

Numbers Cup Optimization: A new method for optimization problems

  • Vezvari, Mojtaba Riyahi;Ghoddosian, Ali;Nikoobin, Amin
    • Structural Engineering and Mechanics
    • /
    • 제66권4호
    • /
    • pp.465-476
    • /
    • 2018
  • In this paper, a new meta-heuristic optimization method is presented. This new method is named "Numbers Cup Optimization" (NCO). The NCO algorithm is inspired by the sport competitions. In this method, the objective function and the design variables are defined as the team and the team members, respectively. Similar to all cups, teams are arranged in groups and the competitions are performed in each group, separately. The best team in each group is determined by the minimum or maximum value of the objective function. The best teams would be allowed to the next round of the cup, by accomplishing minor changes. These teams get grouped again. This process continues until two teams arrive the final and the champion of the Numbers Cup would be identified. In this algorithm, the next cups (same iterations) will be repeated by the improvement of players' performance. To illustrate the capabilities of the proposed method, some standard functions were selected to optimize. Also, size optimization of three benchmark trusses is performed to test the efficiency of the NCO approach. The results obtained from this study, well illustrate the ability of the NCO in solving the optimization problems.

벌칙함수를 도입한 하모니서치 휴리스틱 알고리즘 기반 구조물의 이산최적설계법 (Discrete Optimization of Structural System by Using the Harmony Search Heuristic Algorithm with Penalty Function)

  • 정주성;최윤철;이강석
    • 대한건축학회논문집:구조계
    • /
    • 제33권12호
    • /
    • pp.53-62
    • /
    • 2017
  • Many gradient-based mathematical methods have been developed and are in use for structural size optimization problems, in which the cross-sectional areas or sizing variables are usually assumed to be continuous. In most practical structural engineering design problems, however, the design variables are discrete. The main objective of this paper is to propose an efficient optimization method for structures with discrete-sized variables based on the harmony search (HS) meta-heuristic algorithm that is derived using penalty function. The recently developed HS algorithm was conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary. In this paper, a discrete search strategy using the HS algorithm with a static penalty function is presented in detail and its applicability using several standard truss examples is discussed. The numerical results reveal that the HS algorithm with the static penalty function proposed in this study is a powerful search and design optimization technique for structures with discrete-sized members.

Henry gas solubility optimization for control of a nuclear reactor: A case study

  • Mousakazemi, Seyed Mohammad Hossein
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.940-947
    • /
    • 2022
  • Meta-heuristic algorithms have found their place in optimization problems. Henry gas solubility optimization (HGSO) is one of the newest population-based algorithms. This algorithm is inspired by Henry's law of physics. To evaluate the performance of a new algorithm, it must be used in various problems. On the other hand, the optimization of the proportional-integral-derivative (PID) gains for load-following of a nuclear power plant (NPP) is a good challenge to assess the performance of HGSO. Accordingly, the power control of a pressurized water reactor (PWR) is targeted, based on the point kinetics model with six groups of delayed-neutron precursors. In any optimization problem based on meta-heuristic algorithms, an efficient objective function is required. Therefore, the integral of the time-weighted square error (ITSE) performance index is utilized as the objective (cost) function of HGSO, which is constrained by a stability criterion in steady-state operations. A Lyapunov approach guarantees this stability. The results show that this method provides superior results compared to an empirically tuned PID controller with the least error. It also achieves good accuracy compared to an established GA-tuned PID controller.

휴리스틱 알고리즘을 이용한 트림 및 힐링 각도 조절 최적화 (Optimized Trim and Heeling Adjustment by Using Heuristic Algorithm)

  • 홍충유;이진욱;박제웅
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.62-67
    • /
    • 2004
  • Many ships in voyage experience weight and buoyancy distribution change by various reasons such as change of sea water density and waves, weather condition, and consumption of fuel, provisions, etc . The weight and buoyancy distribution change can bring the ships out of allowable trim, heeling angle. In these case, the ships should adjust trim and heeling angle by shifting of liquid cargo or ballasting, deballasting of ballast tanks for recovery of initial state or for a stable voyage. But, if the adjustment is performed incorrectly, ship's safety such as longitudinal strength, intact stability, propeller immersion, wide visibility, minimum forward draft cannot be secured correctly. So it is required that the adjustment of trim and heeling angle should be planned not by human operators but by optimization computer algorithm. To make an optimized plan to adjust trim and heeling angle guaranteeing the ship's safety and quickness of process, Uk! combined mechanical analysis and optimization algorithm. The candidate algorithms for the study were heuristic algorithm, meta-heuristic algorithm and uninformed searching algorithm. These are widely used in various kinds of optimization problems. Among them, heuristic algorithm $A^\ast$ was chosen for its optimality. The $A^\ast$ algorithm is then applied for the study. Three core elements of $A^\ast$ Algorithm consists of node, operator, evaluation function were modified and redefined. And we analyzed the $A^\ast$ algorithm by considering cooperation with loading instrument installed in most ships. Finally, the algorithm has been applied to tanker ship's various conditions such as Normal Ballast Condition, Homo Design Condition, Alternate Loading Condition, Also the test results are compared and discussed to confirm the efficiency and the usefulness of the methodology developed the system.

  • PDF

TMD parameters optimization in different-length suspension bridges using OTLBO algorithm under near and far-field ground motions

  • Alizadeh, Hamed;Lavasani, H.H.
    • Earthquakes and Structures
    • /
    • 제18권5호
    • /
    • pp.625-635
    • /
    • 2020
  • Suspension bridges have the extended in plan configuration which makes them prone to dynamic events like earthquake. The longer span lead to more flexibility and slender of them. So, control systems seem to be essential in order to protect them against ground motion excitation. Tuned mass damper or in brief TMD is a passive control system that its efficiency is practically proven. Moreover, its parameters i.e. mass ratio, tuning frequency and damping ratio can be optimized in a manner providing the best performance. Meta-heuristic optimization algorithm is a powerful tool to gain this aim. In this study, TMD parameters are optimized in different-length suspension bridges in three distinct cases including 3, 4 and 5 TMDs by observer-teacher-learner based algorithm under a complete set of ground motions formed from both near-field and far-field instances. The Vincent Thomas, Tacoma Narrows and Golden Gate suspension bridges are selected for case studies as short, mean and long span ones, respectively. The results indicate that All cases of used TMDs result in response reduction and case 4TMD can be more suitable for bridges in near and far-field conditions.