• Title/Summary/Keyword: meta-heuristic optimization algorithm

Search Result 123, Processing Time 0.028 seconds

A Study on Optimal Operation Method of Multiple Microgrid System Considering Line Flow Limits (선로제약을 고려한 복수개의 마이크로그리드 최적운영 기법에 관한 연구)

  • Park, Si-Na;An, Jeong-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.258-264
    • /
    • 2018
  • This paper presents application of a differential search (DS) meta-heuristic optimization algorithm for optimal operation of a micro grid system. The DS algorithm simulates the Brownian-like random-walk movement used by an organism to migrate. The micro grid system consists of a wind turbine, a diesel generator, a fuel cell, and a photovoltaic system. The wind turbine generator is modeled by considering the characteristics of variable output. Optimization is aimed at minimizing the cost function of the system, including fuel costs and maximizing fuel efficiency to generate electric power. The simulation was applied to a micro grid system only. This study applies the DS algorithm with excellence and efficiency in terms of coding simplicity, fast convergence speed, and accuracy in the optimal operation of micro grids based on renewable energy resources, and we compared its optimum value to other algorithms to prove its superiority.

Optimization for Configuration and Material Cost of Helical Pile Using Harmony Search Algorithm (하모니서치 알고리즘을 이용한 헬리컬 파일의 형상 및 재료비 최적 설계기법에 대한 연구)

  • Na, Kyunguk;Lee, Dongseop;Lee, Hyungi;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.377-386
    • /
    • 2015
  • The helical pile is a manufactured steel pile consisting of one or more helix-shaped bearing plates affixed to a central shaft. This pile is installed by rotating the shaft into the ground to support structural loads. Advantages of the helical pile are no need for boring or grout process, and ability to install a pile foundation with relatively light devices. In this study, an optimized design method for helical piles is proposed to minimize the material cost with consideration of the load bearing capacity obtained by the cylindrical shear method. The harmony search meta-heuristic algorithm was adopted for optimization process. The optimized design was verified by comparing with the 2009 International building code. It is noted that the optimization for the configuration of helical piles along with material cost proves to be an out-performed tool in designing helical pile foundation with economic feasibility.

Optimization Algorithm for k-opt Swap of Generalized Assignment Problem (일반화된 배정 문제의 k-opt 교환 최적화 알고리즘)

  • Sang-Un Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.5
    • /
    • pp.151-158
    • /
    • 2023
  • The researchers entirely focused on meta-heuristic method for generalized assignment problem(GAP) that is known as NP-hard problem because of the optimal solution within polynomial time algorithm is unknown yet. On the other hand, this paper proposes a heuristic greedy algorithm with rules for finding solutions. Firstly, this paper reduces the weight matrix of original data to wij ≤ bi/l in order to n jobs(items) pack m machines(bins) with l = n/m. The maximum profit of each job was assigned to the machine for the reduced data. Secondly, the allocation was adjusted so that the sum of the weights assigned to each machine did not exceed the machine capacity. Finally, the k-opt swap optimization was performed to maximize the profit. The proposed algorithm is applied to 50 benchmarking data, and the best known solution for about 1/3 data is to solve the problem. The remaining 2/3 data showed comparable results to metaheuristic techniques. Therefore, the proposed algorithm shows the possibility that rules for finding solutions in polynomial time exist for GAP. Experiments demonstrate that it can be a P-problem from an NP-hard.

An Arrangement Technique for Fine Regular Triangle Grid of Network Dome by Using Harmony Search Algorithm (화음탐색 알고리즘을 이용한 네트워크 돔의 정삼각형 격자 조절기법)

  • Shon, Su-Deok;Jo, Hye-Won;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.2
    • /
    • pp.87-94
    • /
    • 2015
  • This paper aimed at modeling a fine triangular grid for network dome by using Harmony Search (HS) algorithm. For this purpose, an optimization process to find a fine regular triangular mesh on the curved surface was proposed and the analysis program was developed. An objective function was consist of areas and edge's length of each triangular and its standard deviations, and design variables were subject to the upper and lower boundary which was calculated on the nodal connectivity. Triangular network dome model, which was initially consist of randomly irregular triangular mesh, was selected for the target example and the numerical result was analyzed in accordance with the HS parameters. From the analysis results of adopted model, the fitness function has been converged and the optimized triangular grid could be obtained from the initially distorted network dome example.

Short-term Scheduling Optimization for Subassembly Line in Ship Production Using Simulated Annealing (시뮬레이티드 어닐링을 활용한 조선 소조립 라인 소일정계획 최적화)

  • Hwang, In-Hyuck;Noh, Jac-Kyou;Lee, Kwang-Kook;Shin, Jon-Gye
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.73-82
    • /
    • 2010
  • Productivity improvement is considered as one of hot potato topics in international shipyards by the increasing amount of orders. In order to improve productivity of lines, shipbuilders have been researching and developing new work method, process automation, advanced planning and scheduling and so on. An optimization approach was accomplished on short-term scheduling of subassembly lines in this research. The problem of subassembly line scheduling turned out to be a non-deterministic polynomial time problem with regard to SKID pattern’s sequence and worker assignment to each station. The problem was applied by simulated annealing algorithm, one of meta-heuristic methods. The algorithm was aimed to avoid local minimum value by changing results with probability function. The optimization result was compared with discrete-event simulation's to propose what pros and cons were. This paper will help planners work on scheduling and decision-making to complete their task by evaluation.

A Study on Distributed Particle Swarm Optimization Algorithm with Quantum-infusion Mechanism (Quantum-infusion 메커니즘을 이용한 분산형 입자군집최적화 알고리즘에 관한 연구)

  • Song, Dong-Ho;Lee, Young-Il;Kim, Tae-Hyoung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.527-531
    • /
    • 2012
  • In this paper, a novel DPSO-QI (Distributed PSO with quantum-infusion mechanism) algorithm improving one of the fatal defect, the so-called premature convergence, that degrades the performance of the conventional PSO algorithms is proposed. The proposed scheme has the following two distinguished features. First, a concept of neighborhood of each particle is introduced, which divides the whole swarm into several small groups with an appropriate size. Such a strategy restricts the information exchange between particles to be done only in each small group. It thus results in the improvement of particles' diversity and further minimization of a probability of occurring the premature convergence phenomena. Second, a quantum-infusion (QI) mechanism based on the quantum mechanics is introduced to generate a meaningful offspring in each small group. This offspring in our PSO mechanism improves the ability to explore a wider area precisely compared to the conventional one, so that the degree of precision of the algorithm is improved. Finally, some numerical results are compared with those of the conventional researches, which clearly demonstrates the effectiveness and reliability of the proposed DPSO-QI algorithm.

Ant Colony System Considering the Iteration Search Frequency that the Global Optimal Path does not Improved (전역 최적 경로가 향상되지 않는 반복 탐색 횟수를 고려한 개미 집단 시스템)

  • Lee, Seung-Gwan;Lee, Dae-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.1
    • /
    • pp.9-15
    • /
    • 2009
  • Ant Colony System is new meta heuristic for hard combinatorial optimization problem. The original ant colony system accomplishes a pheromone updating about only the global optimal path using global updating rule. But, If the global optimal path is not searched until the end condition is satisfied, only pheromone evaporation happens to no matter how a lot of iteration accomplishment. In this paper, the length of the global optimal path does not improved within the limited iterations, we evaluates this state that fall into the local optimum and selects the next node using changed parameters in the state transition rule. This method has effectiveness of the search for a path through diversifications is enhanced by decreasing the value of parameter of the state transition rules for the select of next node, and escape from the local optima is possible. Finally, the performance of Best and Average_Best of proposed algorithm outperforms original ACS.

Ant Colony System for solving the traveling Salesman Problem Considering the Overlapping Edge of Global Best Path (순회 외판원 문제를 풀기 위한 전역 최적 경로의 중복 간선을 고려한 개미 집단 시스템)

  • Lee, Seung-Gwan;Kang, Myung-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.3
    • /
    • pp.203-210
    • /
    • 2011
  • Ant Colony System is a new meta heuristics algorithms to solve hard combinatorial optimization problems. It is a population based approach that uses exploitation of positive feedback as well as greedy search. It was first proposed for tackling the well known Traveling Salesman Problem. In this paper, we propose the searching method to consider the overlapping edge of the global best path of the previous and the current. This method is that we first determine the overlapping edge of the global best path of the previous and the current will be configured likely the optimal path. And, to enhance the pheromone for the overlapping edges increases the probability that the optimal path is configured. Finally, the performance of Best and Average-Best of proposed algorithm outperforms ACS-3-opt, ACS-Subpath and ACS-Iter algorithms.

An Energy- Efficient Optimal multi-dimensional location, Key and Trust Management Based Secure Routing Protocol for Wireless Sensor Network

  • Mercy, S.Sudha;Mathana, J.M.;Jasmine, J.S.Leena
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3834-3857
    • /
    • 2021
  • The design of cluster-based routing protocols is necessary for Wireless Sensor Networks (WSN). But, due to the lack of features, the traditional methods face issues, especially on unbalanced energy consumption of routing protocol. This work focuses on enhancing the security and energy efficiency of the system by proposing Energy Efficient Based Secure Routing Protocol (EESRP) which integrates trust management, optimization algorithm and key management. Initially, the locations of the deployed nodes are calculated along with their trust values. Here, packet transfer is maintained securely by compiling a Digital Signature Algorithm (DSA) and Elliptic Curve Cryptography (ECC) approach. Finally, trust, key, location and energy parameters are incorporated in Particle Swarm Optimization (PSO) and meta-heuristic based Harmony Search (HS) method to find the secure shortest path. Our results show that the energy consumption of the proposed approach is 1.06mJ during the transmission mode, and 8.69 mJ during the receive mode which is lower than the existing approaches. The average throughput and the average PDR for the attacks are also high with 72 and 62.5 respectively. The significance of the research is its ability to improve the performance metrics of existing work by combining the advantages of different approaches. After simulating the model, the results have been validated with conventional methods with respect to the number of live nodes, energy efficiency, network lifetime, packet loss rate, scalability, and energy consumption of routing protocol.

The Optimization of One-way Car-Sharing Service by Dynamic Relocation : Based on PSO Algorithm (실시간 재배치를 통한 카쉐어링 서비스 최적화에 관한 연구 : PSO 방법론 기반으로)

  • Lee, Kun-Young;Lee, Hyung-Seok;Hong, Wyo-Han;Ko, Sung-Seok
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.2
    • /
    • pp.28-36
    • /
    • 2016
  • Recently, owing to the development of ICT industry and wide spread of smart phone, the number of people who use car sharing service are increased rapidly. Currently two-way car sharing system with same rental and return locations are mainly operated since this system can be easily implemented and maintained. Currently the demand of one-way car sharing service has increase explosively. But this system have several obstacle in operation, especially, vehicle stock imbalance issues which invoke vehicle relocation. Hence in this study, we present an optimization approach to depot location and relocation policy in one-way car sharing systems. At first, we modelled as mixed-integer programming models whose objective is to maximize the profits of a car sharing organization considering all the revenues and costs involved and several constraints of relocation policy. And to solve this problem efficiently, we proposed a new method based on particle swarm optimization, which is one of powerful meta-heuristic method. The practical usefulness of the approach is illustrated with a case study involving satellite cities in Seoul Metrolitan Area including several candidate area where this kind systems have not been installed yet and already operating area. Our proposed approach produced plausible solutions with rapid computational time and a little deviation from optimal solution obtained by CPLEX Optimizer. Also we can find that particle swarm optimization method can be used as efficient method with various constraints. Hence based on this results, we can grasp a clear insight into the impact of depot location and relocation policy schemes on the profitability of such systems.