• 제목/요약/키워드: meta-heuristic optimization algorithm

검색결과 121건 처리시간 0.027초

A new hybrid meta-heuristic for structural design: ranked particles optimization

  • Kaveh, A.;Nasrollahi, A.
    • Structural Engineering and Mechanics
    • /
    • 제52권2호
    • /
    • pp.405-426
    • /
    • 2014
  • In this paper, a new meta-heuristic algorithm named Ranked Particles Optimization (RPO), is presented. This algorithm is not inspired from natural or physical phenomena. However, it is based on numerous researches in the field of meta-heuristic optimization algorithms. In this algorithm, like other meta-heuristic algorithms, optimization process starts with by producing a population of random solutions, Particles, located in the feasible search space. In the next step, cost functions corresponding to all random particles are evaluated and some of those having minimum cost functions are stored. These particles are ranked and their weighted average is calculated and named Ranked Center. New solutions are produced by moving each particle along its previous motion, the ranked center, and the best particle found thus far. The robustness of this algorithm is verified by solving some mathematical and structural optimization problems. Simplicity of implementation and reaching to desired solution are two main characteristics of this algorithm.

Optimum design of steel frame structures by a modified dolphin echolocation algorithm

  • Gholizadeh, Saeed;Poorhoseini, Hamed
    • Structural Engineering and Mechanics
    • /
    • 제55권3호
    • /
    • pp.535-554
    • /
    • 2015
  • Dolphin echolocation (DE) optimization algorithm is a recently developed meta-heuristic in which echolocation behavior of Dolphins is utilized for seeking a design space. The computational performance of meta-heuristic algorithms is highly dependent to its internal parameters. But the computational time of adjusting these parameters is usually extensive. The DE is an efficient optimization algorithm as it includes few internal parameters compared with other meta-heuristics. In the present paper a modified Dolphin echolocation (MDE) algorithm is proposed for optimization of steel frame structures. In the MDE the step locations are determined using one-dimensional chaotic maps and this improves the convergence behavior of the algorithm. The effectiveness of the proposed MDE algorithm is illustrated in three benchmark steel frame optimization test examples. Results demonstrate the efficiency of the proposed MDE algorithm in finding better solutions compared to standard DE and other existing algorithms.

Simplified dolphin echolocation algorithm for optimum design of frame

  • Kaveh, Ali;Vaez, Seyed Rohollah Hoseini;Hosseini, Pedram
    • Smart Structures and Systems
    • /
    • 제21권3호
    • /
    • pp.321-333
    • /
    • 2018
  • Simplified Dolphin Echolocation (SDE) algorithm is a recently developed meta-heuristic algorithm. This algorithm is an improved and simplified version of the Dolphin Echolocation Optimization (DEO) method, based on the baiting behavior of the dolphins. The main advantage of the SDE algorithm is that it needs no empirical parameter. In this paper, the SDE algorithm is applied for optimization of three well-studied frame structures. The designs are then compared with those of other meta-heuristic methods from the literature. Numerical results show the efficiency of the SDE algorithm and its competitive ability with other well-established meta-heuristics methods.

Soccer league optimization-based championship algorithm (SLOCA): A fast novel meta-heuristic technique for optimization problems

  • Ghasemi, Mohammad R.;Ghasri, Mehdi;Salarnia, Abdolhamid
    • Advances in Computational Design
    • /
    • 제7권4호
    • /
    • pp.297-319
    • /
    • 2022
  • Due to their natural and social revelation, also their ease and flexibility, human collective behavior and teamwork sports are inspired to introduce optimization algorithms to solve various engineering and scientific problems. Nowadays, meta-heuristic algorithms are becoming some striking methods for solving complex real-world problems. In that respect in the present study, the authors propose a novel meta-innovative algorithm based on soccer teamwork sport, suitable for optimization problems. The method may be referred to as the Soccer League Optimization-based Championship Algorithm, inspired by the Soccer league. This method consists of two main steps, including: 1. Qualifying competitions and 2. Main competitions. To evaluate the robustness of the proposed method, six different benchmark mathematical functions, and two engineering design problem was performed for optimization to assess its efficiency in achieving optimal solutions to various problems. The results show that the proposed algorithm may well explore better performance than some well-known algorithms in various aspects such as consistency through runs and a fast and steep convergence in all problems towards the global optimal fitness value.

Gamma ray interactions based optimization algorithm: Application in radioisotope identification

  • Ghalehasadi, Aydin;Ashrafi, Saleh;Alizadeh, Davood;Meric, Niyazi
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3772-3783
    • /
    • 2021
  • This work proposes a new efficient meta-heuristic optimization algorithm called Gamma Ray Interactions Based Optimization (GRIBO). The algorithm mimics different energy loss processes of a gamma-ray photon during its passage through a matter. The proposed novel algorithm has been applied to search for the global minima of 30 standard benchmark functions. The paper also considers solving real optimization problem in the field of nuclear engineering, radioisotope identification. The results are compared with those obtained by the Particle Swarm Optimization, Genetic Algorithm, Gravitational Search Algorithm and Grey Wolf Optimizer algorithms. The comparisons indicate that the GRIBO algorithm is able to provide very competitive results compared to other well-known meta-heuristics.

시력교정 과정에서 착안된 새로운 메타휴리스틱 최적화 알고리즘의 개발: Vision Correction Algorithm (Development of the new meta-heuristic optimization algorithm inspired by a vision correction procedure: Vision Correction Algorithm)

  • 이의훈;유도근;최영환;김중훈
    • 한국산학기술학회논문지
    • /
    • 제17권3호
    • /
    • pp.117-126
    • /
    • 2016
  • 본 연구에서는 안경의 광학적 특성에서 고안된 새로운 메타휴리스틱 최적화 알고리즘인 Vision Correction Algorithm(VCA)을 개발하였다. VCA는 안경광학분야에서 수행되는 검안과 교정과정을 최적해 탐색 과정에 적용한 기법으로 근시/원시교정-밝기조정-압축시행-난시교정의 과정을 거쳐 최적화를 수행하게 된다. 제안된 VCA는 기존의 메타휴리스틱 알고리즘과 달리 현재까지 축적된 최적화 결과를 기반으로 전역탐색과 국지탐색 적용 확률, 그리고 전역탐색의 방향이 자동적으로 조정 된다. 제안된 방법을 대표적인 최적화 문제(수학 및 공학 분야)에 적용하고, 그 결과를 기존 알고리즘들과 비교하여 제시하였다.

A new hybrid optimization algorithm based on path projection

  • Gharebaghi, Saeed Asil;Ardalan Asl, Mohammad
    • Structural Engineering and Mechanics
    • /
    • 제65권6호
    • /
    • pp.707-719
    • /
    • 2018
  • In this article, a new method is introduced to improve the local search capability of meta-heuristic algorithms using the projection of the path on the border of constraints. In a mathematical point of view, the Gradient Projection Method is applied through a new approach, while the imposed limitations are removed. Accordingly, the gradient vector is replaced with a new meta-heuristic based vector. Besides, the active constraint identification algorithm, and the projection method are changed into less complex approaches. As a result, if a constraint is violated by an agent, a new path will be suggested to correct the direction of the agent's movement. The presented procedure includes three main steps: (1) the identification of the active constraint, (2) the neighboring point determination, and (3) the new direction and step length. Moreover, this method can be applied to some meta-heuristic algorithms. It increases the chance of convergence in the final phase of the search process, especially when the number of the violations of the constraints increases. The method is applied jointly with the authors' newly developed meta-heuristic algorithm, entitled Star Graph. The capability of the resulted hybrid method is examined using the optimal design of truss and frame structures. Eventually, the comparison of the results with other meta-heuristics of the literature shows that the hybrid method is successful in the global as well as local search.

Optimal design of truss structures using a new optimization algorithm based on global sensitivity analysis

  • Kaveh, A.;Mahdavi, V.R.
    • Structural Engineering and Mechanics
    • /
    • 제60권6호
    • /
    • pp.1093-1117
    • /
    • 2016
  • Global sensitivity analysis (GSA) has been widely used to investigate the sensitivity of the model output with respect to its input parameters. In this paper a new single-solution search optimization algorithm is developed based on the GSA, and applied to the size optimization of truss structures. In this method the search space of the optimization is determined using the sensitivity indicator of variables. Unlike the common meta-heuristic algorithms, where all the variables are simultaneously changed in the optimization process, in this approach the sensitive variables of solution are iteratively changed more rapidly than the less sensitive ones in the search space. Comparisons of the present results with those of some previous population-based meta-heuristic algorithms demonstrate its capability, especially for decreasing the number of fitness functions evaluations, in solving the presented benchmark problems.

Topology optimization of nonlinear single layer domes by a new metaheuristic

  • Gholizadeh, Saeed;Barati, Hamed
    • Steel and Composite Structures
    • /
    • 제16권6호
    • /
    • pp.681-701
    • /
    • 2014
  • The main aim of this study is to propose an efficient meta-heuristic algorithm for topology optimization of geometrically nonlinear single layer domes by serially integration of computational advantages of firefly algorithm (FA) and particle swarm optimization (PSO). During the optimization process, the optimum number of rings, the optimum height of crown and tubular section of the member groups are determined considering geometric nonlinear behaviour of the domes. In the proposed algorithm, termed as FA-PSO, in the first stage an optimization process is accomplished using FA to explore the design space then, in the second stage, a local search is performed using PSO around the best solution found by FA. The optimum designs obtained by the proposed algorithm are compared with those reported in the literature and it is demonstrated that the FA-PSO converges to better solutions spending less computational cost emphasizing on the efficiency of the proposed algorithm.

Multi Case Non-Convex Economic Dispatch Problem Solving by Implementation of Multi-Operator Imperialist Competitive Algorithm

  • Eghbalpour, Hamid;Nabatirad, Mohammadreza
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1417-1426
    • /
    • 2017
  • Power system analysis, Non-Convex Economic Dispatch (NED) is considered as an open and demanding optimization problem. Despite the fact that realistic ED problems have non-convex cost functions with equality and inequality constraints, conventional search methods have not been able to effectively find the global answers. Considering the great potential of meta-heuristic optimization techniques, many researchers have started applying these techniques in order to solve NED problems. In this paper, a new and efficient approach is proposed based on imperialist competitive algorithm (ICA). The proposed algorithm which is named multi-operator ICA (MuICA) merges three operators with the original ICA in order to simultaneously avoid the premature convergence and achieve the global optimum answer. In this study, the proposed algorithm has been applied to different test systems and the results have been compared with other optimization methods, tending to study the performance of the MuICA. Simulation results are the confirmation of superior performance of MuICA in solving NED problems.