• Title/Summary/Keyword: meta-heuristic optimization

Search Result 145, Processing Time 0.019 seconds

HS Implementation Based on Music Scale (음계를 기반으로 한 HS 구현)

  • Lee, Tae-Bong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.5
    • /
    • pp.299-307
    • /
    • 2022
  • Harmony Search (HS) is a relatively recently developed meta-heuristic optimization algorithm, and various studies have been conducted on it. HS is based on the musician's improvisational performance, and the objective variables play the role of the instrument. However, each instrument is given only a sound range, and there is no concept of a scale that can be said to be the basis of music. In this study, the performance of the algorithm is improved by introducing a scale to the existing HS and quantizing the bandwidth. The introduced scale was applied to HM initialization instead of the existing method that was randomly initialized in the sound band. The quantization step can be set arbitrarily, and through this, a relatively large bandwidth is used at the beginning of the algorithm to improve the exploration of the algorithm, and a small bandwidth is used to improve the exploitation in the second half. Through the introduction of scale and bandwidth quantization, it was possible to reduce the algorithm performance deviation due to the initial value and improve the algorithm convergence speed and success rate compared to the existing HS. The results of this study were confirmed by comparing examples of optimization values for various functions with the conventional method. Specific comparative values were described in the simulation.

Secant Method for Economic Dispatch with Generator Constraints and Transmission Losses

  • Chandram, K.;Subrahmanyam, N.;Sydulu, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.52-59
    • /
    • 2008
  • This paper describes the secant method for solving the economic dispatch (ED) problem with generator constraints and transmission losses. The ED problem is an important optimization problem in the economic operation of a power system. The proposed algorithm involves selection of minimum and maximum incremental costs (lambda values) and then the evaluation of optimal lambda at required power demand is done by secant method. The proposed algorithm has been tested on a power system having 6, 15, and 40 generating units. Studies have been made on the proposed method to solve the ED problem by taking 120 and 200 units with generator constraints. Simulation results of the proposed approach were compared in terms of solution quality, convergence characteristics, and computation efficiency with conventional methods such as lambda iterative method, heuristic methods such as genetic algorithm, and meta-heuristic methods like particle swarm optimization. It is observed from different case studies that the proposed method provides qualitative solutions with less computational time compared to various methods available in the literature.

Region Segmentation from MR Brain Image Using an Ant Colony Optimization Algorithm (개미 군집 최적화 알고리즘을 이용한 뇌 자기공명 영상의 영역분할)

  • Lee, Myung-Eun;Kim, Soo-Hyung;Lim, Jun-Sik
    • The KIPS Transactions:PartB
    • /
    • v.16B no.3
    • /
    • pp.195-202
    • /
    • 2009
  • In this paper, we propose the regions segmentation method of the white matter and the gray matter for brain MR image by using the ant colony optimization algorithm. Ant Colony Optimization (ACO) is a new meta heuristics algorithm to solve hard combinatorial optimization problem. This algorithm finds the expected pixel for image as the real ant finds the food from nest to food source. Then ants deposit pheromone on the pixels, and the pheromone will affect the motion of next ants. At each iteration step, ants will change their positions in the image according to the transition rule. Finally, we can obtain the segmentation results through analyzing the pheromone distribution in the image. We compared the proposed method with other threshold methods, viz. the Otsu' method, the genetic algorithm, the fuzzy method, and the original ant colony optimization algorithm. From comparison results, the proposed method is more exact than other threshold methods for the segmentation of specific region structures in MR brain image.

Probabilistic optimization of nailing system for soil walls in uncertain condition

  • Mitra Jafarbeglou;Farzin Kalantary
    • Geomechanics and Engineering
    • /
    • v.34 no.6
    • /
    • pp.597-609
    • /
    • 2023
  • One of the applicable methods for the stabilization of soil walls is the nailing system which consists of tensile struts. The stability and safety of soil nail wall systems are influenced by the geometrical parameters of the nailing system. Generally, the determination of nailing parameters in order to achieve optimal performance of the nailing system for the safety of soil walls is defined in the framework of optimization problems. Also, according to the various uncertainty in the mechanical parameters of soil structures, it is necessary to evaluate the reliability of the system as a probabilistic problem. In this paper, the optimal design of the nailing system is carried out in deterministic and probabilistic cases using meta-heuristic and reliability-based design optimization methods. The colliding body optimization algorithm and first-order reliability method are used for optimization and reliability analysis problems, respectively. The objective function is defined based on the total cost of nails and safety factors and reliability index are selected as constraints. The mechanical properties of the nailing system are selected as design variables and the mechanical properties of the soil are selected as random variables. The results show that the reliability of the optimally designed soil nail system is very sensitive to uncertainty in soil mechanical parameters. Also, the design results are affected by uncertainties in soil mechanical parameters due to the values of safety factors. Reliability-based design optimization results show that a nailing system can be designed for the expected level of reliability and failure probability.

An enhanced simulated annealing algorithm for topology optimization of steel double-layer grid structures

  • Mostafa Mashayekhi;Hamzeh Ghasemi
    • Advances in Computational Design
    • /
    • v.9 no.2
    • /
    • pp.115-136
    • /
    • 2024
  • Stochastic optimization methods have been extensively studied for structural optimization in recent decades. In this study, a novel algorithm named the CA-SA method, is proposed for topology optimization of steel double-layer grid structures. The CA-SA method is a hybridized algorithm combining the Simulated Annealing (SA) algorithm and the Cellular Automata (CA) method. In the CA-SA method, during the initial iterations of the SA algorithm, some of the preliminary designs obtained by SA are placed in the cells of the CA. In each successive iteration, a cell is randomly chosen from the CA. Then, the "local leader" (LL) is determined by selecting the best design from the chosen cell and its neighboring ones. This LL then serves as the leader for modifying the SA algorithm. To evaluate the performance of the proposed CA-SA algorithm, two square-on-square steel double-layer grid structures are considered, with discrete cross-sectional areas. These numerical examples demonstrate the superiority of the CA-SA method over SA, and other meta-heuristic algorithms reported in the literature in the topology optimization of large-scale skeletal structures.

An Improved Cat Swarm Optimization Algorithm Based on Opposition-Based Learning and Cauchy Operator for Clustering

  • Kumar, Yugal;Sahoo, Gadadhar
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.1000-1013
    • /
    • 2017
  • Clustering is a NP-hard problem that is used to find the relationship between patterns in a given set of patterns. It is an unsupervised technique that is applied to obtain the optimal cluster centers, especially in partitioned based clustering algorithms. On the other hand, cat swarm optimization (CSO) is a new meta-heuristic algorithm that has been applied to solve various optimization problems and it provides better results in comparison to other similar types of algorithms. However, this algorithm suffers from diversity and local optima problems. To overcome these problems, we are proposing an improved version of the CSO algorithm by using opposition-based learning and the Cauchy mutation operator. We applied the opposition-based learning method to enhance the diversity of the CSO algorithm and we used the Cauchy mutation operator to prevent the CSO algorithm from trapping in local optima. The performance of our proposed algorithm was tested with several artificial and real datasets and compared with existing methods like K-means, particle swarm optimization, and CSO. The experimental results show the applicability of our proposed method.

Subspace search mechanism and cuckoo search algorithm for size optimization of space trusses

  • Kaveh, A.;Bakhshpoori, T.
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.289-303
    • /
    • 2015
  • This study presents a strategy so-called Subspace Search Mechanism (SSM) for reducing the computational time for convergence of population based metaheusristic algorithms. The selected metaheuristic for this study is the Cuckoo Search algorithm (CS) dealing with size optimization of trusses. The complexity of structural optimization problems can be partially due to the presence of high-dimensional design variables. SSM approach aims to reduce dimension of the problem. Design variables are categorized to predefined groups (subspaces). SSM focuses on the multiple use of the metaheuristic at hand for each subspace. Optimizer updates the design variables for each subspace independently. Updating rules require candidate designs evaluation. Each candidate design is the assemblage of responsible set of design variables that define the subspace of interest. SSM is incorporated to the Cuckoo Search algorithm for size optimizing of three small, moderate and large space trusses. Optimization results indicate that SSM enables the CS to work with less number of population (42%), as a result reducing the time of convergence, in exchange for some accuracy (1.5%). It is shown that the loss of accuracy can be lessened with increasing the order of complexity. This suggests its applicability to other algorithms and other complex finite element-based engineering design problems.

A Novel Dynamic Optimization Technique for Finding Optimal Trust Weights in Cloud

  • Prasad, Aluri V.H. Sai;Rajkumar, Ganapavarapu V.S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.2060-2073
    • /
    • 2022
  • Cloud Computing permits users to access vast amounts of services of computing power in a virtualized environment. Providing secure services is essential. There are several problems to real-world optimization that are dynamic which means they tend to change over time. For these types of issues, the goal is not always to identify one optimum but to keep continuously adapting to the solution according to the change in the environment. The problem of scheduling in Cloud where new tasks keep coming over time is unique in terms of dynamic optimization problems. Until now, there has been a large majority of research made on the application of various Evolutionary Algorithms (EAs) to address the issues of dynamic optimization, with the focus on the maintenance of population diversity to ensure the flexibility for adapting to the changes in the environment. Generally, trust refers to the confidence or assurance in a set of entities that assure the security of data. In this work, a dynamic optimization technique is proposed to find an optimal trust weights in cloud during scheduling.

A TSK fuzzy model optimization with meta-heuristic algorithms for seismic response prediction of nonlinear steel moment-resisting frames

  • Ebrahim Asadi;Reza Goli Ejlali;Seyyed Arash Mousavi Ghasemi;Siamak Talatahari
    • Structural Engineering and Mechanics
    • /
    • v.90 no.2
    • /
    • pp.189-208
    • /
    • 2024
  • Artificial intelligence is one of the efficient methods that can be developed to simulate nonlinear behavior and predict the response of building structures. In this regard, an adaptive method based on optimization algorithms is used to train the TSK model of the fuzzy inference system to estimate the seismic behavior of building structures based on analytical data. The optimization algorithm is implemented to determine the parameters of the TSK model based on the minimization of prediction error for the training data set. The adaptive training is designed on the feedback of the results of previous time steps, in which three training cases of 2, 5, and 10 previous time steps were used. The training data is collected from the results of nonlinear time history analysis under 100 ground motion records with different seismic properties. Also, 10 records were used to test the inference system. The performance of the proposed inference system is evaluated on two 3 and 20-story models of nonlinear steel moment frame. The results show that the inference system of the TSK model by combining the optimization method is an efficient computational method for predicting the response of nonlinear structures. Meanwhile, the multi-vers optimization (MVO) algorithm is more accurate in determining the optimal parameters of the TSK model. Also, the accuracy of the results increases significantly with increasing the number of previous steps.

Harmony search algorithm and its application to optimization problems in civil and water resources engineering (화음탐색법과 토목 및 수자원공학 최적화문제에의 적용)

  • Kim, Joong Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.4
    • /
    • pp.281-291
    • /
    • 2018
  • Harmony search algorithm (HSA), developed by Hydrosystem lab. in Korea University in 2001, was a new meta-heuristic optimization algorithm inspired by the iterative improvision process of Jazz music players where the best harmony is eventually produced. HSA is now one of the most well-known meta-heuristic algorithms (as proven by its cited number of the first published paper more than 3,600 times as of January 11th 2018 based on Google Scholar citation) and has been applied to diverse research domains such as not only water resources and civil engineering but also in medical science, business, and humanities. This paper is a review article written with the wish for wider application of HSA and other optimization algorithms, especially in the domain of water resources engineering. Therefore, this paper first briefly introduces the mechanism and operators of HSA and then reviews its application area and citation frequency per research domain. In addition, recent globalization of HSA will be investigated and summarized by checking the current status of related international conferences and on-going research projects. After reviewing previous domestic papers with optimization algorithms specifically published in the water resources domain, this paper is finalized by delivering some suggestions to encourage the application of optimization algorithms including HSA.