• Title/Summary/Keyword: meta-heuristic optimization

Search Result 145, Processing Time 0.021 seconds

Colliding bodies optimization for size and topology optimization of truss structures

  • Kaveh, A.;Mahdavi, V.R.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.847-865
    • /
    • 2015
  • This paper presents the application of a recently developed meta-heuristic algorithm, called Colliding Bodies Optimization (CBO), for size and topology optimization of steel trusses. This method is based on the one-dimensional collisions between two bodies, where each agent solution is considered as a body. The performance of the proposed algorithm is investigated through four benchmark trusses for minimum weight with static and dynamic constraints. A comparison of the numerical results of the CBO with those of other available algorithms indicates that the proposed technique is capable of locating promising solutions using lesser or identical computational effort, with no need for internal parameter tuning.

Design of multi-span steel box girder using lion pride optimization algorithm

  • Kaveh, A.;Mahjoubi, S.
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.607-618
    • /
    • 2017
  • In this research, a newly developed nature-inspired optimization method, the Lion Pride Optimization algorithm (LPOA), is utilized for optimal design of composite steel box girder bridges. A composite box girder bridge is one of the common types of bridges used for medium spans due to their economic, aesthetic, and structural benefits. The aim of the present optimization procedure is to provide a feasible set of design variables in order to minimize the weight of the steel trapezoidal box girders. The solution space is delimited by different types of design constraints specified by the American Association of State Highway and Transportation Officials. Additionally, the optimal solution obtained by LPOA is compared to the results of other well-established meta-heuristic algorithms, namely Gray Wolf Optimization (GWO), Ant Lion Optimizer (ALO) and the results of former researches. By this comparison the capability of the LPOA in optimal design of composite steel box girder bridges is demonstrated.

Topology optimization of nonlinear single layer domes by a new metaheuristic

  • Gholizadeh, Saeed;Barati, Hamed
    • Steel and Composite Structures
    • /
    • v.16 no.6
    • /
    • pp.681-701
    • /
    • 2014
  • The main aim of this study is to propose an efficient meta-heuristic algorithm for topology optimization of geometrically nonlinear single layer domes by serially integration of computational advantages of firefly algorithm (FA) and particle swarm optimization (PSO). During the optimization process, the optimum number of rings, the optimum height of crown and tubular section of the member groups are determined considering geometric nonlinear behaviour of the domes. In the proposed algorithm, termed as FA-PSO, in the first stage an optimization process is accomplished using FA to explore the design space then, in the second stage, a local search is performed using PSO around the best solution found by FA. The optimum designs obtained by the proposed algorithm are compared with those reported in the literature and it is demonstrated that the FA-PSO converges to better solutions spending less computational cost emphasizing on the efficiency of the proposed algorithm.

GA-VNS-HC Approach for Engineering Design Optimization Problems (공학설계 최적화 문제 해결을 위한 GA-VNS-HC 접근법)

  • Yun, YoungSu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.1
    • /
    • pp.37-48
    • /
    • 2022
  • In this study, a hybrid meta-heuristic approach is proposed for solving engineering design optimization problems. Various approaches in many literatures have been proposed to solve engineering optimization problems with various types of decision variables and complex constraints. Unfortunately, however, their efficiencies for locating optimal solution do not be highly improved. Therefore, we propose a hybrid meta-heuristic approach for improving their weaknesses. the proposed GA-VNS-HC approach is combining genetic algorithm (GA) for global search with variable neighborhood search (VNS) and hill climbing (HC) for local search. In case study, various types of engineering design optimization problems are used for proving the efficiency of the proposed GA-VNS-HC approach

Optimum design of laterally-supported castellated beams using tug of war optimization algorithm

  • Kaveh, A.;Shokohi, F.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.3
    • /
    • pp.533-553
    • /
    • 2016
  • In this paper, the recently developed meta-heuristic algorithm called tug of war optimization is applied to optimal design of castellated beams. Two common types of laterally supported castellated beams are considered as design problems: beams with hexagonal openings and beams with circular openings. Here, castellated beams have been studied for two cases: beams without filled holes and beams with end-filled holes. Also, tug of war optimization algorithm is utilized for obtaining the solution of these design problems. For this purpose, the minimum cost is taken as the objective function, and some benchmark problems are solved from literature.

Multi Case Non-Convex Economic Dispatch Problem Solving by Implementation of Multi-Operator Imperialist Competitive Algorithm

  • Eghbalpour, Hamid;Nabatirad, Mohammadreza
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1417-1426
    • /
    • 2017
  • Power system analysis, Non-Convex Economic Dispatch (NED) is considered as an open and demanding optimization problem. Despite the fact that realistic ED problems have non-convex cost functions with equality and inequality constraints, conventional search methods have not been able to effectively find the global answers. Considering the great potential of meta-heuristic optimization techniques, many researchers have started applying these techniques in order to solve NED problems. In this paper, a new and efficient approach is proposed based on imperialist competitive algorithm (ICA). The proposed algorithm which is named multi-operator ICA (MuICA) merges three operators with the original ICA in order to simultaneously avoid the premature convergence and achieve the global optimum answer. In this study, the proposed algorithm has been applied to different test systems and the results have been compared with other optimization methods, tending to study the performance of the MuICA. Simulation results are the confirmation of superior performance of MuICA in solving NED problems.

Analysis of trusses by total potential optimization method coupled with harmony search

  • Toklu, Yusuf Cengiz;Bekdas, Gebrail;Temur, Rasim
    • Structural Engineering and Mechanics
    • /
    • v.45 no.2
    • /
    • pp.183-199
    • /
    • 2013
  • Current methods of analysis of trusses depend on matrix formulations based on equilibrium equations which are in fact derived from energy principles, and compatibility conditions. Recently it has been shown that the minimum energy principle, by itself, in its pure and unmodified form, can well be exploited to analyze structures when coupled with an optimization algorithm, specifically with a meta-heuristic algorithm. The resulting technique that can be called Total Potential Optimization using Meta-heuristic Algorithms (TPO/MA) has already been applied to analyses of linear and nonlinear plane trusses successfully as coupled with simulated annealing and local search algorithms. In this study the technique is applied to both 2-dimensional and 3-dimensional trusses emphasizing robustness, reliability and accuracy. The trials have shown that the technique is robust in two senses: all runs result in answers, and all answers are acceptable as to the reliability and accuracy within the prescribed limits. It has also been shown that Harmony Search presents itself as an appropriate algorithm for the purpose.

Design of steel frames by an enhanced moth-flame optimization algorithm

  • Gholizadeh, Saeed;Davoudi, Hamed;Fattahi, Fayegh
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.129-140
    • /
    • 2017
  • Structural optimization is one of the popular and active research areas in the field of structural engineering. In the present study, the newly developed moth-flame optimization (MFO) algorithm and its enhanced version termed as enhanced moth-flame optimization (EMFO) are employed to implement the optimization process of planar and 3D steel frame structures with discrete design variables. The main inspiration of this optimizer is the navigation method of moths in nature called transverse orientation. A number of benchmark steel frame optimization problems are solved by the MFO and EMFO algorithms and the results are compared with those of other meta-heuristics. The obtained numerical results indicate that the proposed EMFO algorithm possesses better computational performance compared with other existing meta-heuristics.

A hybrid CSS and PSO algorithm for optimal design of structures

  • Kaveh, A.;Talatahari, S.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.783-797
    • /
    • 2012
  • A new hybrid meta-heuristic optimization algorithm is presented for design of structures. The algorithm is based on the concepts of the charged system search (CSS) and the particle swarm optimization (PSO) algorithms. The CSS is inspired by the Coulomb and Gauss's laws of electrostatics in physics, the governing laws of motion from the Newtonian mechanics, and the PSO is based on the swarm intelligence and utilizes the information of the best fitness historically achieved by the particles (local best) and by the best among all the particles (global best). In the new hybrid algorithm, each agent is affected by local and global best positions stored in the charged memory considering the governing laws of electrical physics. Three different types of structures are optimized as the numerical examples with the new algorithm. Comparison of the results of the hybrid algorithm with those of other meta-heuristic algorithms proves the robustness of the new algorithm.

Numbers Cup Optimization: A new method for optimization problems

  • Vezvari, Mojtaba Riyahi;Ghoddosian, Ali;Nikoobin, Amin
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.465-476
    • /
    • 2018
  • In this paper, a new meta-heuristic optimization method is presented. This new method is named "Numbers Cup Optimization" (NCO). The NCO algorithm is inspired by the sport competitions. In this method, the objective function and the design variables are defined as the team and the team members, respectively. Similar to all cups, teams are arranged in groups and the competitions are performed in each group, separately. The best team in each group is determined by the minimum or maximum value of the objective function. The best teams would be allowed to the next round of the cup, by accomplishing minor changes. These teams get grouped again. This process continues until two teams arrive the final and the champion of the Numbers Cup would be identified. In this algorithm, the next cups (same iterations) will be repeated by the improvement of players' performance. To illustrate the capabilities of the proposed method, some standard functions were selected to optimize. Also, size optimization of three benchmark trusses is performed to test the efficiency of the NCO approach. The results obtained from this study, well illustrate the ability of the NCO in solving the optimization problems.