• Title/Summary/Keyword: meta-heuristic optimization

Search Result 145, Processing Time 0.03 seconds

Solving the Travelling Salesman Problem Using an Ant Colony System Algorithm

  • Zakir Hussain Ahmed;Majid Yousefikhoshbakht;Abdul Khader Jilani Saudagar;Shakir Khan
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.2
    • /
    • pp.55-64
    • /
    • 2023
  • The travelling salesman problem (TSP) is an important combinatorial optimization problem that is used in several engineering science branches and has drawn interest to several researchers and scientists. In this problem, a salesman from an arbitrary node, called the warehouse, starts moving and returns to the warehouse after visiting n clients, given that each client is visited only once. The objective in this problem is to find the route with the least cost to the salesman. In this study, a meta-based ant colony system algorithm (ACSA) is suggested to find solution to the TSP that does not use local pheromone update. This algorithm uses the global pheromone update and new heuristic information. Further, pheromone evaporation coefficients are used in search space of the problem as diversification. This modification allows the algorithm to escape local optimization points as much as possible. In addition, 3-opt local search is used as an intensification mechanism for more quality. The effectiveness of the suggested algorithm is assessed on a several standard problem instances. The results show the power of the suggested algorithm which could find quality solutions with a small gap, between obtained solution and optimal solution, of 1%. Additionally, the results in contrast with other algorithms show the appropriate quality of competitiveness of our proposed ACSA.

The Optimization of One-way Car-Sharing Service by Dynamic Relocation : Based on PSO Algorithm (실시간 재배치를 통한 카쉐어링 서비스 최적화에 관한 연구 : PSO 방법론 기반으로)

  • Lee, Kun-Young;Lee, Hyung-Seok;Hong, Wyo-Han;Ko, Sung-Seok
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.2
    • /
    • pp.28-36
    • /
    • 2016
  • Recently, owing to the development of ICT industry and wide spread of smart phone, the number of people who use car sharing service are increased rapidly. Currently two-way car sharing system with same rental and return locations are mainly operated since this system can be easily implemented and maintained. Currently the demand of one-way car sharing service has increase explosively. But this system have several obstacle in operation, especially, vehicle stock imbalance issues which invoke vehicle relocation. Hence in this study, we present an optimization approach to depot location and relocation policy in one-way car sharing systems. At first, we modelled as mixed-integer programming models whose objective is to maximize the profits of a car sharing organization considering all the revenues and costs involved and several constraints of relocation policy. And to solve this problem efficiently, we proposed a new method based on particle swarm optimization, which is one of powerful meta-heuristic method. The practical usefulness of the approach is illustrated with a case study involving satellite cities in Seoul Metrolitan Area including several candidate area where this kind systems have not been installed yet and already operating area. Our proposed approach produced plausible solutions with rapid computational time and a little deviation from optimal solution obtained by CPLEX Optimizer. Also we can find that particle swarm optimization method can be used as efficient method with various constraints. Hence based on this results, we can grasp a clear insight into the impact of depot location and relocation policy schemes on the profitability of such systems.

Task Sequence Optimization for 6-DOF Manipulator in Press Forming Process (프레스 공정에서 6자유도 로봇의 작업 시퀀스 최적화)

  • Yoon, Hyun Joong;Chung, Seong Youb
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.704-710
    • /
    • 2017
  • Our research team is developing a 6-DOF manipulator that is adequate for the narrow workspace of press forming processes. This paper addresses the task sequence optimization methods for the manipulator to minimize the task-finishing time. First, a kinematic model of the manipulator is presented, and the anticipated times for moving among the task locations are computed. Then, a mathematical model of the task sequence optimization problem is presented, followed by a comparison of three meta-heuristic methods to solve the optimization problem: an ant colony system, simulated annealing, and a genetic algorithm. The simulation shows that the genetic algorithm is robust to the parameter settings and has the best performance in both minimizing the task-finishing time and the computing time compared to the other methods. Finally, the algorithms were implemented and validated through a simulation using Mathworks' Matlab and Coppelia Robotics' V-REP (virtual robot experimentation platform).

Optimization Algorithm for Energy-aware Routing in Networks with Bundled Links (번들 링크를 가진 네트워크에서 에너지 인식 라우팅을 위한 최적화 알고리즘)

  • Jang, Kil-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.572-580
    • /
    • 2021
  • In order to reduce transmission delay and increase reliability in networks, mainly high-performance and high-power network equipment is used to guarantee network quality. In this paper, we propose an optimization algorithm to minimize the energy consumed when transmitting traffic in networks with a bundle link composed of multiple physical cables. The proposed optimization algorithm is a meta-heuristic method, which uses tabu search algorithm. In addition, it is designed to minimize transmission energy by minimizing the cables on the paths of the source and destination nodes for each traffic. In the proposed optimization algorithm, performance evaluation was performed in terms of the number of cables used in the transmission and the link utilization for all traffic on networks, and the performance evaluation result confirmed the superior performance than the previously proposed method.

Reviews of Bus Transit Route Network Design Problem (버스 노선망 설계 문제(BTRNDP)의 고찰)

  • Han, Jong-Hak;Lee, Seung-Jae;Lim, Seong-Su;Kim, Jong-Hyung
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.3 s.81
    • /
    • pp.35-47
    • /
    • 2005
  • This paper is to review a literature concerning Bus Transit Route Network Design(BTRNDP), to describe a future study direction for a systematic application for the BTRNDP. Since a bus transit uses a fixed route, schedule, stop, therefore an approach methodology is different from that of auto network design problem. An approach methodology for BTRNDP is classified by 8 categories: manual & guideline, market analysis, system analytic model. heuristic model. hybrid model. experienced-based model. simulation-based model. mathematical optimization model. In most previous BTRNDP, objective function is to minimize user and operator costs, and constraints on the total operator cost, fleet size and service frequency are common to several previous approach. Transit trip assignment mostly use multi-path trip assignment. Since the search for optimal solution from a large search space of BTRNDP made up by all possible solutions, the mixed combinatorial problem are usually NP-hard. Therefore, previous researches for the BTRNDP use a sequential design process, which is composed of several design steps as follows: the generation of a candidate route set, the route analysis and evaluation process, the selection process of a optimal route set Future study will focus on a development of detailed OD trip table based on bus stop, systematic transit route network evaluation model. updated transit trip assignment technique and advanced solution search algorithm for BTRNDP.

A Study on Identification using Particle Swarm Optimization for 3-DOF Helicopter System (3-자유도 헬리콥터 시스템의 입자군집최적화 기법을 이용한 시스템 식별)

  • Lee, Ho-Woon;Kim, Tae-Woo;Kim, Tae-Hyoung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.105-110
    • /
    • 2015
  • This study proposes the more improved mathematical model than conventional that for the 3-DOF Helicopter System in Quanser Inc., and checks the validity about the proposed model by performance comparison between the controller based on the conventional model and that based on the proposed model. Research process is next : First, analyze the dynamics for the 3-DOF helicopter system and establish the linear mathematical model. Second, check the eliminated nonlinear-elements in linearization process for establishing the linear mathematical model. And establish the improved mathematical model including the parameters corresponding to the eliminated nonlinear-elements. At that time, it is used for modeling that Particle Swarm Optimization algorithm the meta-heuristic global optimization method. Finally, design the controller based on the proposed model, and verify the validity of the proposed model by comparison about the experimental results between the designed controller and the controller based on the conventional model.

Optimization of Unit Commitment Schedule using Parallel Tabu Search (병렬 타부 탐색을 이용한 발전기 기동정지계획의 최적화)

  • Lee, yong-Hwan;Hwang, Jun-ha;Ryu, Kwang-Ryel;Park, Jun-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.9
    • /
    • pp.645-653
    • /
    • 2002
  • The unit commitment problem in a power system involves determining the start-up and shut-down schedules of many dynamos for a day or a week while satisfying the power demands and diverse constraints of the individual units in the system. It is very difficult to derive an economically optimal schedule due to its huge search space when the number of dynamos involved is large. Tabu search is a popular solution method used for various optimization problems because it is equipped with effective means of searching beyond local optima and also it can naturally incorporate and exploit domain knowledge specific to the target problem. When given a large-scaled problem with a number of complicated constraints, however, tabu search cannot easily find a good solution within a reasonable time. This paper shows that a large- scaled optimization problem such as the unit commitment problem can be solved efficiently by using a parallel tabu search. The parallel tabu search not only reduces the search time significantly but also finds a solution of better quality.

Short-term Scheduling Optimization for Subassembly Line in Ship Production Using Simulated Annealing (시뮬레이티드 어닐링을 활용한 조선 소조립 라인 소일정계획 최적화)

  • Hwang, In-Hyuck;Noh, Jac-Kyou;Lee, Kwang-Kook;Shin, Jon-Gye
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.73-82
    • /
    • 2010
  • Productivity improvement is considered as one of hot potato topics in international shipyards by the increasing amount of orders. In order to improve productivity of lines, shipbuilders have been researching and developing new work method, process automation, advanced planning and scheduling and so on. An optimization approach was accomplished on short-term scheduling of subassembly lines in this research. The problem of subassembly line scheduling turned out to be a non-deterministic polynomial time problem with regard to SKID pattern’s sequence and worker assignment to each station. The problem was applied by simulated annealing algorithm, one of meta-heuristic methods. The algorithm was aimed to avoid local minimum value by changing results with probability function. The optimization result was compared with discrete-event simulation's to propose what pros and cons were. This paper will help planners work on scheduling and decision-making to complete their task by evaluation.

Intelligent prediction of engineered cementitious composites with limestone calcined clay cement (LC3-ECC) compressive strength based on novel machine learning techniques

  • Enming Li;Ning Zhang;Bin Xi;Vivian WY Tam;Jiajia Wang;Jian Zhou
    • Computers and Concrete
    • /
    • v.32 no.6
    • /
    • pp.577-594
    • /
    • 2023
  • Engineered cementitious composites with calcined clay limestone cement (LC3-ECC) as a kind of green, low-carbon and high toughness concrete, has recently received significant investigation. However, the complicated relationship between potential influential factors and LC3-ECC compressive strength makes the prediction of LC3-ECC compressive strength difficult. Regarding this, the machine learning-based prediction models for the compressive strength of LC3-ECC concrete is firstly proposed and developed. Models combine three novel meta-heuristic algorithms (golden jackal optimization algorithm, butterfly optimization algorithm and whale optimization algorithm) with support vector regression (SVR) to improve the accuracy of prediction. A new dataset about LC3-ECC compressive strength was integrated based on 156 data from previous studies and used to develop the SVR-based models. Thirteen potential factors affecting the compressive strength of LC3-ECC were comprehensively considered in the model. The results show all hybrid SVR prediction models can reach the Coefficient of determination (R2) above 0.95 for the testing set and 0.97 for the training set. Radar and Taylor plots also show better overall prediction performance of the hybrid SVR models than several traditional machine learning techniques, which confirms the superiority of the three proposed methods. The successful development of this predictive model can provide scientific guidance for LC3-ECC materials and further apply to such low-carbon, sustainable cement-based materials.

Efficiency Evaluation of Harmony Search Algorithm according to Constraint Handling Techniques : Application to Optimal Pipe Size Design Problem (제약조건 처리기법에 따른 하모니써치 알고리즘의 효율성 평가 : 관로 최소비용설계 문제의 적용)

  • Yoo, Do Guen;Lee, Ho Min;Lee, Eui Hoon;Kim, Joong Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4999-5008
    • /
    • 2015
  • The application of efficient constraint handling technique is fundamental method to find better solutions in engineering optimization problems with constraints. In this research four of constraint handling techniques are used with a meta-heuristic optimization method, harmony search algorithm, and the efficiency of algorithm is evaluated. The sample problem for evaluation of effectiveness is one of the typical discrete problems, optimal pipe size design problem of water distribution system. The result shows the suggested constraint handling technique derives better solutions than classical constraint handling technique with penalty function. Especially, the case of ${\varepsilon}$-constrained method derives solutions with efficiency and stability. This technique is meaningful method for improvement of harmony search algorithm without the need for development of new algorithm. In addition, the applicability of suggested method for large scale engineering optimization problems is verified with application of constraint handling technique to big size problem has over 400 of decision variables.