• Title/Summary/Keyword: meta-heuristic optimization

Search Result 145, Processing Time 0.025 seconds

Harmony Search Algorithm-Based Approach For Discrete Size Optimization of Truss Structures

  • Lee Kang-Seok;Kim Jeong-Hee;Choi Chang-Sik;Lee Li-Hyung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.351-358
    • /
    • 2005
  • Many methods have been developed and are in use for structural size optimization problems, In which the cross-sectional areas or sizing variables are usually assumed to be continuous. In most practical structural engineering design problems, however, the design variables are discrete. This paper proposes an efficient optimization method for structures with discrete-sized variables based on the harmony search (HS) meta-heuristic algorithm. The recently developed HS algorithm was conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary In this paper, a discrete search strategy using the HS algorithm is presented in detail and its effectiveness and robustness, as compared to current discrete optimization methods, are demonstrated through a standard truss example. The numerical results reveal that the proposed method is a powerful search and design optimization tool for structures with discrete-sized members, and may yield better solutions than those obtained using current method.

  • PDF

Optimal design of pitched roof frames with tapered members using ECBO algorithm

  • Kaveh, Ali;Mahdavi, Vahid Reza;Kamalinejad, Mohammad
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.643-652
    • /
    • 2017
  • Pitched roof frames are widely used in construction of the industrial buildings, gyms, schools and colleges, fire stations, storages, hangars and many other low rise structures. The weight and shape of the gable frames with tapered members, as a familiar group of the pitched roof frames, are highly dependent on the properties of the member cross-sectional. In this work Enhanced Colliding Bodies Optimization (ECBO) is utilized for optimal design of three gable frames with tapered members. In order to optimize the frames, the design is performed using the AISC specifications for stress, displacement and stability constraints. The design constraints and weight of the gable frames are computed from the cross-section of members. These optimum weights are obtained using aforementioned optimization algorithms considering the cross-sections of the members and design constraints as optimization variables and constraints, respectively. A comparative study of the PSO and CBO with ECBO is also performed to illustrate the importance of the enhancement of the utilized optimization algorithm.

Optimum design of geometrically non-linear steel frames using artificial bee colony algorithm

  • Degertekin, S.O.
    • Steel and Composite Structures
    • /
    • v.12 no.6
    • /
    • pp.505-522
    • /
    • 2012
  • An artificial bee colony (ABC) algorithm is developed for the optimum design of geometrically non-linear steel frames. The ABC is a new swarm intelligence method which simulates the intelligent foraging behaviour of honeybee swarm for solving the optimization problems. Minimum weight design of steel frames is aimed under the strength, displacement and size constraints. The geometric non-linearity of the frame members is taken into account in the optimum design algorithm. The performance of the ABC algorithm is tested on three steel frames taken from literature. The results obtained from the design examples demonstrate that the ABC algorithm could find better designs than other meta-heuristic optimization algorithms in shorter time.

Symbiotic organisms search algorithm based solution to optimize both real power loss and voltage stability limit of an electrical energy system

  • Pagidi, Balachennaiah;Munagala, Suryakalavathi;Palukuru, Nagendra
    • Advances in Energy Research
    • /
    • v.4 no.4
    • /
    • pp.255-274
    • /
    • 2016
  • This paper presents a novel symbiotic organisms search (SOS) algorithm to optimize both real power loss (RPL) and voltage stability limit (VSL) of a transmission network by controlling the variables such as unified power flow controller (UPFC) location, UPFC series injected voltage magnitude and phase angle and transformer taps simultaneously. Mathematically, this issue can be formulated as nonlinear equality and inequality constrained multi objective, multi variable optimization problem with a fitness function integrating both RPL and VSL. The symbiotic organisms search (SOS) algorithm is a nature inspired optimization method based on the biological interactions between the organisms in ecosystem. The advantage of SOS algorithm is that it requires a few control parameters compared to other meta-heuristic algorithms. The proposed SOS algorithm is applied for solving optimum control variables for both single objective and multi-objective optimization problems and tested on New England 39 bus test system. In the single objective optimization problem only RPL minimization is considered. The simulation results of the proposed algorithm have been compared with the results of the algorithms like interior point successive linear programming (IPSLP) and bacteria foraging algorithm (BFA) reported in the literature. The comparison results confirm the efficacy and superiority of the proposed method in optimizing both single and multi objective problems.

An Innovative Fast Relay Coordination Method to Bypass the Time Consumption of Optimization Algorithms in Relay Protection Coordination

  • Kheshti, Mostafa;Kang, Xiaoning;Jiao, Zaibin
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.612-620
    • /
    • 2017
  • Relay coordination in power system is a complex problem and so far, meta-heuristic algorithms and other methods as an alternative approach may not properly deal with large scale relay coordination due to their huge time consuming computation. In some cases the relay coordination could be unachievable. As the urgency for a proper approach is essential, in this paper an innovative and simple relay coordination method is introduced that is able to be applied on optimization algorithms for relay protection coordination. The objective function equation of operating time of relays are divided into two separate functions with less constraints. As the analytical results show here, this equivalent method has a remarkable speed with high accuracy to coordinate directional relays. Two distribution systems including directional overcurrent relays are studied in DigSILENT software and the collected data are examined in MATLAB. The relay settings of this method are compared with particle swarm optimization and genetic algorithm. The analytical results show the correctness of this mathematical and practical approach. This fast coordination method has a proper velocity of convergence with low iteration that can be used in large scale systems in practice and also to provide a feasible solution for protection coordination in smart grids as online or offline protection coordination.

Intelligent fuzzy inference system approach for modeling of debonding strength in FRP retrofitted masonry elements

  • Khatibinia, Mohsen;Mohammadizadeh, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.283-293
    • /
    • 2017
  • The main contribution of the present paper is to propose an intelligent fuzzy inference system approach for modeling the debonding strength of masonry elements retrofitted with Fiber Reinforced Polymer (FRP). To achieve this, the hybrid of meta-heuristic optimization methods and adaptive-network-based fuzzy inference system (ANFIS) is implemented. In this study, particle swarm optimization with passive congregation (PSOPC) and real coded genetic algorithm (RCGA) are used to determine the best parameters of ANFIS from which better bond strength models in terms of modeling accuracy can be generated. To evaluate the accuracy of the proposed PSOPC-ANFIS and RCGA-ANFIS approaches, the numerical results are compared based on a database from laboratory testing results of 109 sub-assemblages. The statistical evaluation results demonstrate that PSOPC-ANFIS in comparison with ANFIS-RCGA considerably enhances the accuracy of the ANFIS approach. Furthermore, the comparison between the proposed approaches and other soft computing methods indicate that the approaches can effectively predict the debonding strength and that their modeling results outperform those based on the other methods.

A Hybrid Parallel Genetic Algorithm for Reliability Optimal Design of a Series System (직렬시스템의 신뢰도 최적 설계를 위한 Hybrid 병렬 유전자 알고리즘 해법)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.2
    • /
    • pp.48-55
    • /
    • 2010
  • Reliability has been considered as a one of the major design measures in various industrial and military systems. The main objective is to suggest a mathematical programming model and a hybrid parallel genetic algorithm(HPGA) for the problem that determines the optimal component reliability to maximize the system reliability under cost constraint in this study. Reliability optimization problem has been known as a NP-hard problem and normally formulated as a mixed binary integer programming model. Component structure, reliability, and cost were computed by using HPGA and compared with the results of existing meta-heuristic such as Ant Colony Optimization(ACO), Simulated Annealing(SA), Tabu Search(TS) and Reoptimization Procedure. The global optimal solutions of each problem are obtained by using CPLEX 11.1. The results of suggested algorithm give the same or better solutions than existing algorithms, because the suggested algorithm could paratactically evolved by operating several sub-populations and improving solution through swap and 2-opt processes.

Optimization of modal load pattern for pushover analysis of building structures

  • Shayanfar, Mohsen Ali;Ashoory, Mansoor;Bakhshpoori, Taha;Farhadi, Basir
    • Structural Engineering and Mechanics
    • /
    • v.47 no.1
    • /
    • pp.119-129
    • /
    • 2013
  • Nonlinear Static Procedures (NSPs) have been developed as a practical tool to estimate the seismic demand of structures. Several researches have accomplished to minimize errors of NSPs, namely pushover procedures, in the Nonlinear Time History Analysis (NTHA), as the most exact method. The most important issue in a typical pushover procedure is the pattern and technique of loading which are extracted based on structural dynamic fundamentals. In this paper, the coefficients of modal force combination is focused involving a meta-heuristic optimization algorithm to find the optimum load pattern which results in a response with minimum amount of errors in comparison to the NTHA counterpart. Other parameters of the problem are based on the FEMA recommendations for pushover analysis of building structures. The proposed approach is implemented on a high-rise 20 storey concrete moment resisting frame under three earthquake records. In order to demonstrate the effectiveness and robustness of the studied procedure the results are presented beside other well-known pushover methods such as MPA and the FEMA procedures, and the results show the efficiency of the proposed load patterns.

Application of Self-Adaptive Meta-Heuristic Optimization Algorithm for Muskingum Flood Routing (Muskingum 홍수추적을 위한 자가적응형 메타 휴리스틱 알고리즘의 적용)

  • Lee, Eui Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.29-37
    • /
    • 2020
  • In the past, meta-heuristic optimization algorithms were developed to solve the problems caused by complex nonlinearities occurring in natural phenomena, and various studies have been conducted to examine the applicability of the developed algorithms. The self-adaptive vision correction algorithm (SAVCA) showed excellent performance in mathematics problems, but it did not apply to complex engineering problems. Therefore, it is necessary to review the application process of the SAVCA. The SAVCA, which was recently developed and showed excellent performance, was applied to the advanced Muskingum flood routing model (ANLMM-L) to examine the application and application process. First, initial solutions were generated by the SAVCA, and the fitness was then calculated by ANLMM-L. The new value selected by a local and global search was put into the SAVCA. A new solution was generated, and ANLMM-L was applied again to calculate the fitness. The final calculation was conducted by comparing and improving the results of the new solution and existing solutions. The sum of squares (SSQ) was used to calculate the error between the observed and calculated runoff, and the applied results were compared with the current models. SAVCA, which showed excellent performance in the Muskingum flood routing model, is expected to show excellent performance in a range of engineering problems.

A Polynomial Time Algorithm for Aircraft Landing Problem (항공기 착륙 문제의 다항시간 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.9
    • /
    • pp.161-168
    • /
    • 2014
  • The optimal solution of minimum cost for aircraft landing problem(ALP) is very difficult problem because the approached aircraft are random time interval. Therefore this problem has been applied by various meta heuristic methods. This paper suggests O(nlog n) polynomial time heuristic algorithm to obtain the optimal solution for ALP. This algorithm sorts the target time of aircraft into ascending order. Then we apply the optimization of change the landing sequence take account of separation time and the cost of landing. For the Airland1 through Airland8 of benchmark data of ALP, we choose 25 data until the number of runway m that the total landing cost is 0. We can be obtain the optimal solution for all of the 25 data. Especially we can be improve the known optimal solution for m = 1of Airland8.