• Title/Summary/Keyword: metE gene

Search Result 33, Processing Time 0.025 seconds

Cloning and Expression of the metE gene coding for homocysteine methyltransferase from the basidiomycete Ganoderma lucidum in E. coli (영지버섯으로부터 homocysteine methyltransferase를 암호화 하는 metE 유전자의 클로닝 및 E. coli에서의 발현)

  • Kim, Hyun-Jeong;Park, Dong-Chul;Lee, Kap-Duk;Lee, Byul-La;Lee, Kap-Rang
    • The Korean Journal of Mycology
    • /
    • v.21 no.4
    • /
    • pp.279-284
    • /
    • 1993
  • The metE gene coding for $N^{5}-methyl-H_{4}-folate;$ homocysteine methyltransferase from the basidiomycete Ganoderma lucidum was cloned by complementation of methionine-requiring mutants of E. coli. The size of a inserted DNA was about 1.54 kb and had 5 restriction enzyme sites. A physical map was constructed. Southern blot analysis confirmed the presence of a transforming DNA in the genome of Ganoderma lucidum. indicating the presence of a single copy.

  • PDF

Study of the Expression of E-cadherin, $\beta$-catenin, and c-Met in Gastric Adenocarcinomas (위 선암종에서의 E-cadherin, $\beta$-catenin 및 c-Met 단백 발현에 대한 연구)

  • Cho Seong Jin;Kim Min Kyung;Shin Bong Kyung;Min Youn Ki;Cho Min Young;Suh Sung Ock;Won Nam Hee;Chae Yang Seok
    • Journal of Gastric Cancer
    • /
    • v.1 no.2
    • /
    • pp.92-99
    • /
    • 2001
  • Purpose: E-cadherin is an adhesion molecule essential for tight connection between cells, forming the cadherin/catenin complex. Truncated $\beta$-catenin disrupts the interaction between E-cadherin and $\alpha$-catenin, leading to the loss of intercellular adhesion. Met protein, the hepatocyte growth factor receptor, plays important roles in signal transduction. We investigated the relationships between the expressions of E-cadherin, $\beta$-catenin, and c-met protein and the clinicopathological and prognostic parameters in gastric adenocarcinomas. Materials and Methods: The patterns of E-cadherin, $\beta$-catenin, and c-met protein expression were studied using immunohistochemistry in formalin-fixed, paraffin-embedded archival tissues from 76 surgically resected gastric adenocarcinomas. Results: Increased expressions of E-cadherin, $\beta$-catenin, and c-met were more significantly correlated in early gastric cancers (EGC) than in advanced gastric cancers (AGC) (P=0.002, P=0.003 and P=0.026). The positive immunoreactivities of all three markers were markedly lower in signet ring-cell type and poorly differentiated type lesions than in intestinal-type lesions. Decreased expression of the $\beta$-catenin protein correlated well with increased tumor invasion depth (P=0.039), and increased lymph node metastasis correlated well with reduced expression of c-met (P=0.046). Conclusion: In gastric cancers, reduced expressions of the E-cadherin, $\beta$-catenin, and c-met proteins may play some role in poorer tumor differentiation, deeper tumor invasion, and increased lymph node metastasis. Also, the c-met gene is thought to play a specific role in the mechanism of the yet unknown catenin action.

  • PDF

Development of AFLP and STS Markers Related to Stay Green Trait in Multi-Tillered Maize

  • Jang Cheol Seong;Lee Hee Bong;Seo Yong Weon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.4
    • /
    • pp.358-362
    • /
    • 2004
  • In order to develop molecular markers related to stay green phenotype, AFLP analysis was conducted using near-isogenic lines for either stay green or non stay green trait. Both lines have characteristics of multi-ear and tillers (MET). Two out of 64 primer combinations of selective amplification identified three reproducible polymorphic fragments in MET corn with stay green. Both of E+AGC/M+CAC and E+AAG/M+CAA primer combinations produced two and one specific polymorphic fragments linked to stay green trait, respectively. For the conversion of AFLPs to sequence tag sites (STSs), primers were designed form both end sequences of each two polymorphic fragments. One fragment, which was amplified with E+AAG/M+CAA primer combinations, possessed 298 bp long and showed a $91\%$ homology with maize retrotransposon Cinful-l. One out of two polymorphic fragments produced with E+AGC/M+CAC primer combination had 236 bp long and matched a $96\%$ homology with an intron region of 22kDa alpha zein gene cluster in Zea mays. One out of two PCR fragments amplified with MET2 primer set in the stay green MET was not produced in the non-stay green MET. The developed AFLP and STS marker could be used as an efficient tool for selection of the stay green trait in the MET inbred.

Methionine Analogue Probes Functionally Important Residues in Active Site of Methionyl-tRNA Synthetase

  • Jo, Yeong-Joon;Lee, Sang-Won;Jo, Myung-Kyun;Lee, Jee-Woo;Kang, Mee-Kyoung;Yoon, Jeong-Hyeok;Kim, Sung-Hoon
    • BMB Reports
    • /
    • v.32 no.6
    • /
    • pp.547-553
    • /
    • 1999
  • Aminoacyl-tRNA synthetases are essential enzymes catalyzing the attachment of specific amino acids to cognate tRNAs. In the present work, the substrate analogue L-methionine hydroxamate was used to identify functional residues located in the active site of the E. coli methionyl-tRNA synthetase (MetRS). This compound inhibited bacteria, yeast, and human MetRS activities to a similar degree, suggesting a conserved active site structure and mechanism between MetRSs of different phylogenetic domains. Mutants of the E. coli MetRS resistant to methionine hydroxamate were also isolated. These mutants contained a substitution either at T10, Y15, or Y94. These residues are highly conserved among the different MetRSs and the mutants showed decreased aminoacylation activity, suggesting their functional and structural significances. The putative roles of these residues are discussed on a structural basis.

  • PDF

Cloning and Functional Analysis of Gene Coding for S-Adenosyl-L-Methionine Synthetase from Streptomyces natalensis (Streptomyces natalensis로부터 S-adenosyl-L-methionine synthetase 유전자의 클로닝 및 기능분석)

  • Yoo, Dong-Min;Hwang, Yong-Il;Choi, Sun-Uk
    • Journal of Life Science
    • /
    • v.21 no.1
    • /
    • pp.96-101
    • /
    • 2011
  • S-Adenosyl-L-methionine synthtase (SAM-s) catalyzes the biosynthesis of SAM from ATP and L-methionine. SAM plays important roles in the primary and secondary metabolism of cells. A metK encoding a SAM-s was searched from Streptomyces natalensis producing natamycin, a predominantly a strong antifungal agent, inhibiting the growth of both yeasts and molds and preventing the formation of aflatoxin in filamentous fungi. To obtain the metK of S. natalensis, PCR using primers designed from the two highly conserved regions for metK genes of Streptomyces strains was carried out, and an intact 1.2-kb metK gene of S. natalensis was cloned by genomic Southern hybridization with PCR product as a probe. To identify the function of the cloned metK gene, it was inserted into pSET152ET for its high expression in the Streptomyces strain, and then introduced into S. lividans TK24 as a host by transconjugation using E. coli ET12567(pUZ8002). The high expression of metK in S. lividans TK24 induced actinorhodin production on R5 solid medium, and its amount in R4 liquid medium was 10-fold higher than that by exconjugant including only pSET152ET.

Allelic variation of melanocortin-1 receptor locus in Saudi indigenous sheep exhibiting different color coats

  • Mahmoud, Ahmed H.;Mashaly, Ashraf M.;Rady, Ahmed M.;Al-Anazi, Khalid M.;Saleh, Amgad A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.2
    • /
    • pp.154-159
    • /
    • 2017
  • Objective: This study was designed to characterize the DNA polymorphisms of the melanocortin-1 receptor (MC1R) gene in indigenous Saudi Arabian sheep breeds exhibiting different color coats, along with individuals of the Sawaknee breed, an exotic sheep imported from Sudan. Methods: The complete coding region of MC1R gene including parts of 3' and 5' untranslated regions was amplified and sequenced from three the indigenous Saudi sheep; Najdi (generally black, n = 41), Naeimi (generally white with brown faces, n = 36) and Herri (generally white, n = 18), in addition to 13 Sawaknee sheep. Results: Five single nucleotide polymorphisms (SNPs) were detected in the MC1R gene: two led to nonsynonymous mutations (c.218 T>A, p.73 Met>Lys and c.361 G>A, p.121 Asp>Asn) and three led to synonymous mutations (c.429 C>T, p.143 Tyr>Tyr; c.600 T>G, p.200 Leu>Leu, and c.735 C>T, p.245 Ile>Ile). Based on these five SNPs, eight haplotypes representing MC1R $E^d$ and $E^+$ alleles were identified among the studied sheep breeds. The most common haplotype (H3) of the dominant $E^d$ allele was associated with either black or brown coat color in Najdi and Sawaknee sheep, respectively. Two other haplotypes (H6 and H7) of $E^d$ allele, with only the nonsynonymous mutation A218T, were detected for the first time in Saudi indigenous sheep. Conclusion: In addition to investigating the MC1R allelic variation in Saudi indigenous sheep populations, the present study supports the assumption that the two independent nonsynonymous Met73Lys and Asp121Asn mutations in MC1R gene are associated with black or red coat colors in sheep breeds.

Enhanced supply of methionine regulates protein synthesis in bovine mammary epithelial cells under hyperthermia condition

  • Zhou, Jia;Yue, Shuangming;Xue, Benchu;Wang, Zhisheng;Wang, Lizhi;Peng, Quanhui;Xue, Bai
    • Journal of Animal Science and Technology
    • /
    • v.63 no.5
    • /
    • pp.1126-1141
    • /
    • 2021
  • Recent evidence has shown that methionine (Met) supplementation can improve milk protein synthesis under hyperthermia (which reduces milk production). To explore the mechanism by which milk protein synthesis is affected by Met supplementation under hyperthermia, mammary alveolar (MAC-T) cells were incubated at a hyperthermic temperature of 42℃ for 6 h in media with different concentrations of Met. While the control group (CON) contained a normal amino acid concentration profile (60 ㎍/mL of Met), the three treatment groups were supplemented with Met at concentrations of 10 ㎍/mL (MET70, 70 ㎍/mL of Met), 20 ㎍/mL (MET80, 80 ㎍/mL of Met), and 30 ㎍/mL (MET90,90 ㎍/mL of Met). Our results show that additional Met supplementation increases the mRNA and protein levels of BCL2 (B-cell lymphoma-2, an anti-apoptosis agent), and decreases the mRNA and protein levels of BAX (Bcl-2-associated X protein, a pro-apoptosis agent), especially at an additional supplementary concentration of 20 ㎍/mL (group Met80). Supplementation with higher concentrations of Met decreased the mRNA levels of Caspase-3 and Caspase-9, and increased protein levels of heat shock protein (HSP70). The total protein levels of the mechanistic target of rapamycin (mTOR) and the mTOR signalling pathway-related proteins, AKT, ribosomal protein S6 kinase B1 (RPS6KB1), and ribosomal protein S6 (RPS6), increased with increasing Met supplementation, and peaked at 80 ㎍/mL Met (group Met80). In addition, we also found that additional Met supplementation upregulated the gene expression of αS1-casein (CSN1S1), β-casein (CSN2), and the amino acid transporter genes SLC38A2, SLC38A3 which are known to be mTOR targets. Additional Met supplementation, however, had no effect on the gene expression of κ-casein (CSN3) and solute carrier family 34 member 2 (SLC34A2). Our results suggest that additional Met supplementation with 20 ㎍/mL may promote the synthesis of milk proteins in bovine mammary epithelial cells under hyperthermia by inhibiting apoptosis, activating the AKT-mTOR-RPS6KB1 signalling pathway, and regulating the entry of amino acids into these cells.

The Structural Characterization of Recombinant Bovine Somatotropin Expressed in Escherichia coli (재조합 소성장호르몬의 구조적 특성)

  • 김정호;김훈주박은숙김준
    • KSBB Journal
    • /
    • v.9 no.2
    • /
    • pp.165-173
    • /
    • 1994
  • In this paper we have described the structural characterization of recombinant bovine somatotropin produced in Escherichia coli. Recombinant bovine somatotropin consists of 191 amino acid residues with a calculated molecular weight of 21,802 Da. For fragmentation of recombinant bovine somatotropin, we have used trypsin, Staphylococcus aureus V8 pretease, CNBr, and mild acid hydrolysis method. Digestion and cleavage with these proteases and chemicals yielded peptides of various size for amino acid sequence determination. The N-terminal sequence analysis was carried out up to thirty residues. Because the design of the recombinant bovine somatotropin gene for expression was such that the coding sequence begins with an initiation codon, AUG, before Ala, the first amino acid of bovine somatotropin, we could expect the initial amino acid as N-formyl Met. But the first amino acid of this protein, expressed in E. coli cells as inclusion bodies, was Ala. And the amino acid composition of RP-HPLC purified recombinant bovine somatotropin was determined and no essencial difference was observed. The amino acid sequence of the recombinant bovine somatotropin was identical to that predicted from its recombinant gene. There was no processing or replacement of amino acid residues in recombinant bovine somatotropin expressed in E. coli. The hydropathy plot of recombinant bovine somatotropin revealed a hydrophobic region at the NH2-terminus and hydrophilic region at the COOH-terminus. The E. coli expression system is thought to be valuable for the expression of recombinant bovine somatotropin because protein was processed to remove the N-terminal Met residue by methionyl-aminopeptidase autonomously.

  • PDF

TopoisomeraseII and Topoisomerase IV Gene Mutations Fluoroquinolone Resistance of Pseudomonas aeruginosa

  • Kim Yuntae;Baik Heongseok
    • Biomedical Science Letters
    • /
    • v.10 no.4
    • /
    • pp.507-514
    • /
    • 2004
  • The Pseudomonas aeruginosa isolated from the clinical specimens has a mutation on the QRDR (quinolone resistance determining region). There were obvious mutations in both gyrA and parC gene which are major targets of quinolone. Simultaneous mutations were found two sites or more on these genes in all of ten strains. GyrB or parE gene had only silent mutation without converted amino acids. We confirmed that P. aeruginosa from clinical specimens exhibited decreased sensitivity to fluroquiolone due to changed Thr-83→lle and Asp-87→Asn types on gyrA and altered Ser-87→Leu type on parC. This is the first finding that a new Met-93→Thr type on parC as well as mutations on gyrB or parE genes differed from existing patterns. This study showed more mutations of gyrA rather than parC, suggesting that change of Type Ⅳ topoisomerase is more serious than that of type Ⅱ (DNA gyrase).

  • PDF

The Wine Yeast Strain-Dependent Expression of Genes Implicated in Sulfide Production in Response to Nitrogen Availability

  • Mendes-Ferreira, A.;Barbosa, C.;Jimenez-Marti, E.;Del Olmo, M.;Mendes-Faia, A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.9
    • /
    • pp.1314-1321
    • /
    • 2010
  • Sulfur metabolism in S. cerevisiae is well established, but the mechanisms underlying the formation of sulfide remain obscure. Here, we investigated by real-time RT-PCR the dependence of expression levels of MET3, MET5/ECM17, MET10, MET16, and MET17 along with SSU1 on nitrogen availability in two wine yeast strains that produce divergent sulfide profiles. MET3 was the most highly expressed of the genes studied in strain PYCC4072, and SSU1 in strain UCD522. The strains behaved differently according to the sampling times, with UCD522 and PYCC4072 showing the highest expression levels at 120 h and 72 h, respectively. In the presence of 267 mg assimilable N/l, the genes were more highly expressed in strain UCD522 than in PYCC4072. MET5/ECM17 and MET17 were only weakly expressed in both strains under any condition tested. MET10 and SSU1 in both strains, but MET16 only in PYCC4072, were consistently upregulated when sulfide production was inhibited. This study illustrates that strain genotype could be important in determining enzyme activities and therefore the rate of sulfide liberation. This linkage, for some yeast strains, of sulfide production to expression levels of genes associated with sulfate assimilation and sulfur amino acid biosynthesis could be relevant for defining new strategies for the genetic improvement of wine yeasts.