• Title/Summary/Keyword: messenger RNA

Search Result 164, Processing Time 0.03 seconds

Systematical Analysis of Cutaneous Squamous Cell Carcinoma Network of microRNAs, Transcription Factors, and Target and Host Genes

  • Wang, Ning;Xu, Zhi-Wen;Wang, Kun-Hao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10355-10361
    • /
    • 2015
  • Background: MicroRNAs (miRNAs) are small non-coding RNA molecules found in multicellular eukaryotes which are implicated in development of cancer, including cutaneous squamous cell carcinoma (cSCC). Expression is controlled by transcription factors (TFs) that bind to specific DNA sequences, thereby controlling the flow (or transcription) of genetic information from DNA to messenger RNA. Interactions result in biological signal control networks. Materials and Methods: Molecular components involved in cSCC were here assembled at abnormally expressed, related and global levels. Networks at these three levels were constructed with corresponding biological factors in term of interactions between miRNAs and target genes, TFs and miRNAs, and host genes and miRNAs. Up/down regulation or mutation of the factors were considered in the context of the regulation and significant patterns were extracted. Results: Participants of the networks were evaluated based on their expression and regulation of other factors. Sub-networks with two core TFs, TP53 and EIF2C2, as the centers are identified. These share self-adapt feedback regulation in which a mutual restraint exists. Up or down regulation of certain genes and miRNAs are discussed. Some, for example the expression of MMP13, were in line with expectation while others, including FGFR3, need further investigation of their unexpected behavior. Conclusions: The present research suggests that dozens of components, miRNAs, TFs, target genes and host genes included, unite as networks through their regulation to function systematically in human cSCC. Networks built under the currently available sources provide critical signal controlling pathways and frequent patterns. Inappropriate controlling signal flow from abnormal expression of key TFs may push the system into an incontrollable situation and therefore contributes to cSCC development.

Screening and Development of DNA Aptamers Specific to Several Oral Pathogens

  • Park, Jung-Pyo;Shin, Hye Joo;Park, Suk-Gyun;Oh, Hee-Kyun;Choi, Choong-Ho;Park, Hong-Ju;Kook, Min-Suk;Ohk, Seung-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.3
    • /
    • pp.393-398
    • /
    • 2015
  • Aptamers are composed of single-stranded oilgonucleotides that can selectively bind desired molecules. It has been reported that RNA or DNA could act as not only a genetic messenger but also a catalyst in metabolic pathways. RNA aptamers (average sizes 40-50 bp) are smaller than antibodies and have strong binding capacities to target molecules, similar to antigenantibody interactions. Once an aptamer was selected, it can be readily produced in large quantities at low cost. The objectives of this study are to screen and develop aptamers specific to oral pathogens such as Porphyromonas gingivalis, Treponema denticola, and Streptococcus mutans. The bacterial cell pellet was fixed with formaldehyde as a target molecule for the screening of aptamers. The SELEX method was used for the screening of aptamers and a modified western blot analysis was used to verify their specificities. Through SELEX, 40 kinds of aptamers were selected and the specificity of the aptamers to the bacterial cells was confirmed by modified western blot analysis. Through the SELEX method, 40 aptamers that specifically bind to oral pathogens were screened and isolated. The aptamers showed possibility as effective candidates for the detection agents of oral infections.

Molecular cloning of metal-responsive transcription factor-1 (MTF-1) and transcriptional responses to metal and heat stresses in Pacific abalone, Haliotis discus hannai

  • Lee, Sang Yoon;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.20 no.7
    • /
    • pp.9.1-9.13
    • /
    • 2017
  • Background: Metal-responsive transcription factor-1 (MTF-1) is a key transcriptional regulator playing crucial roles in metal homeostasis and cellular adaptation to diverse oxidative stresses. In order to understand cellular pathways associated with metal regulation and stress responses in Pacific abalone (Haliotis discus hannai), this study was aimed to isolate the genetic determinant of abalone MTF-1 and to examine its expression characteristics under basal and experimentally stimulated conditions. Results: The abalone MTF-1 shared conserved features in zinc-finger DNA binding domain with its orthologs; however, it represented a non-conservative shape in presumed transactivation domain region with the lack of typical motifs for nuclear export signal (NES) and Cys-cluster. Abalone MTF-1 promoter exhibited various transcription factor binding motifs that would be potentially related with metal regulation, stress responses, and development. The highest messenger RNA (mRNA) expression level of MTF-1 was observed in the testes, and MTF-1 transcripts were detected during the entire period of embryonic and early ontogenic developments. Abalone MTF-1 was found to be Cd inducible and highly modulated by heat shock treatment. Conclusion: Abalone MTF-1 possesses a non-consensus structure of activation domains and represents distinct features for its activation mechanism in response to metal overload and heat stress. The activation mechanism of abalone MTF-1 might include both indirect zinc sensing and direct de novo synthesis of transcripts. Taken together, results from this study could be a useful basis for future researches on stress physiology of this abalone species, particularly with regard to heavy metal detoxification and thermal adaptation.

Effects of Ginsenoside Rg3 on Early-stage Inflammatory Response in Spinal Cord Compression of Rodents (Ginsenoside Rg3이 흰쥐 척수압박손상의 초기 염증반응에 미치는 영향)

  • Jeong, Beoul;Lee, Jong-Soo
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.23 no.2
    • /
    • pp.1-15
    • /
    • 2013
  • Objectives : In present study, we investigated the effects of ginsenoside Rg3 on early-stage inflammatory response in spinal cord compression of rodents. Methods : Spinal cord injury(SCI) was induced by a vascular clip method(30 g, 5 min) on the spinal cord of mice. Rg3 was treated orally at 1 hour prior to the SCI induction. Messenger ribonucleic acid(mRNA) expression of tumor necrosis factor-${\alpha}$(TNF-${\alpha}$), interleukin-1${\beta}$(IL-1${\beta}$), interleukin-6(IL-6) and cyclooxygenase-2(COX-2) was measured by the real-time polymerase chain reaction(RT-PCR). Microglia in the spinal cord tissue, neurophils and COX-2 in the peri-lesion and inducible nitric oxide synthase(iNOS) expression in the ventral horn of SCI induced rats were measured by immunohistochemical stain. Results : 1. Rg3 significantly reduced the mRNA expression of TNF-${\alpha}$, IL-1${\beta}$, and COX-2 in the spinal cord tissue compared with SCI group(p<0.05, p<0.01). 2. Rg3 significantly reduced the total number of activated microglia and proportion of phagocytic form in the total activated microglia compared with SCI group(p<0.05, p<0.01). 3. Rg3 significantly reduced myeloperoxidase(MPO) positive neurophil in the peri-lesion compared with SCI group(p<0.05). 4. Rg3 reduced the COX-2 expression in the tissue and motor neurons compared with SCI group. 5. Rg3 significantly reduced iNOS positive motor neurons in the ventral horn compared with SCI group(p<0.01). Conclusions : In conclusion, we demonstrated at first that treatment of ginsenoside Rg3 could reduce significantly the levels of inflammatory mediators in a spinal cord compression model of rodents. Therefore, these results suggested that ginsenoside Rg3 may be a useful antimiflamatory therapeutic candidate for SCI.

Nuclear factor kappa-B- and activator protein-1-mediated immunostimulatory activity of compound K in monocytes and macrophages

  • Yang, Woo Seok;Yi, Young-Su;Kim, Donghyun;Kim, Min Ho;Park, Jae Gwang;Kim, Eunji;Lee, Sang Yeol;Yoon, Keejung;Kim, Jong-Hoon;Park, Junseong;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.298-306
    • /
    • 2017
  • Background: Compound K (CK) is a bioactive derivative of ginsenoside Rb1 in Panax ginseng (Korean ginseng). Its biological and pharmacological activities have been studied in various disease conditions, although its immunomodulatory role in innate immunity mediated by monocytes/macrophages has been poorly understood. In this study, we aimed to elucidate the regulatory role of CK on cellular events mediated by monocytes and macrophages in innate immune responses. Methods: The immunomodulatory role of CK was explored by various immunoassays including cell-cell adhesion, fibronectin adhesion, cell migration, phagocytic uptake, costimulatory molecules, reactive oxygen species production, luciferase activity, and by the measurement of mRNA levels of proinflammatory genes. Results: Compound K induced cell cluster formation through cell-cell adhesion, cell migration, and phagocytic activity, but it suppressed cell-tissue interactions in U937 and RAW264.7 cells. Compound K also upregulated the surface expression of the cell adhesion molecule cluster of differentiation (CD) 43 (CD43) and costimulatory molecules CD69, CD80, and CD86, but it downregulated the expression of monocyte differentiation marker CD82 in RAW264.7 cells. Moreover, CK induced the release of reactive oxygen species and induced messenger RNA expression of proinflammatory genes, inducible nitric oxide synthase, and tumor necrosis factor-alpha by enhancing the nuclear translocation and transcriptional activities of nuclear factor kappa-B and activator protein-1. Conclusion: Our results suggest that CK has an immunomodulatory role in innate immune responses through regulating various cellular events mediated by monocytes and macrophages.

Overexpression of CXCL2 inhibits cell proliferation and promotes apoptosis in hepatocellular carcinoma

  • Ding, Jun;Xu, Kangdi;Zhang, Jie;Lin, Bingyi;Wang, Yubo;Yin, Shengyong;Xie, Haiyang;Zhou, Lin;Zheng, Shusen
    • BMB Reports
    • /
    • v.51 no.12
    • /
    • pp.630-635
    • /
    • 2018
  • C-X-C motif chemokine ligand 2 (CXCL2) is a small secreted protein that exhibits a structure similar to the proangiogenic subgroup of the CXC chemokine family. Recently, accumulating evidence suggests that chemokines play a pivotal role in cancer progression and carcinogenesis. We examined the expression levels of 7 types of $ELR^+$ CXCLs messenger RNA (mRNA) in 264 clinical samples. We found that CXCL2 expression was stably down-regulated in 94% of hepatocellular carcinoma (HCC) specimens compared with paired adjacent normal liver tissues and some HCC cell lines. Moreover, CXCL2 overexpression profoundly attenuated HCC cell proliferation and growth and induced apoptosis in vitro. In animal studies, we found that overexpressing CXCL2 by lentivirus also apparently inhibited the size and weight of subcutaneous tumours in nude mice. Furthermore, we demonstrated that CXCL2 induced HCC cell apoptosis via both nuclear and mitochondrial apoptosis pathways. Our results indicate that CXCL2 negatively regulates the cell cycle in HCC cells via the ERK1/2 signalling pathway. These results provide new insights into HCC and may ultimately lead to the discovery of innovative therapeutic approaches of HCC.

Tanshinone I, an Active Ingredient of Salvia miltiorrhiza, Inhibits Differentiation of 3T3-L1 Preadipocytes and Lipid Accumulation in Zebrafish

  • Kwon, Hyo-Shin;Jang, Byeong-Churl
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.20 no.2
    • /
    • pp.109-121
    • /
    • 2020
  • Objectives: Tanshinone I is a bioactive constituent in Salvia miltiorrhiza. At present, the anti-obesity effect and mechanism of tanshinone I are not fully understood. Here we investigated the effect of tanshinone I on lipid accumulation in 3T3-L1 preadipocytes and zebrafish. Methods: Lipid accumulation and triglyceride (TG) content in 3T3-L1 cells were determined by Oil Red O staining and AdipoRed assay, respectively. The expression and phosphorylation levels of adipogenic/lipogenic proteins in 3T3-L1 cells were evaluated by Western blotting. The messenger RNA (mRNA) expression levels of adipogenic/lipogenic markers and leptin in 3T3-L1 cells were measured by reverse transcription polymerase chain reaction (RT-PCR). Lipid accumulation in zebrafish was assessed by LipidGreen2 staining. Results: Tanshinone I at 5 μM largely blocked lipid accumulation and reduced TG content in differentiating 3T3-L1 cells. Furthermore, tanshinone I decreased the expression of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), acetyl CoA carboxylase (ACC), and perilipin A but also the phosphorylation of signal transducer and activator of transcription-3 (STAT-3) in differentiating 3T3-L1 cells. In addition, tanshinone I increased the phosphorylation of adenosine 3',5'-cyclic monophosphate (cAMP)-activated protein kinase (AMPK) while decreased the intracellular adenosine triphosphate (ATP) content with no change in the phosphorylation and expression of liver kinase-B1 in differentiating 3T3-L1 cells. Importantly, tanshinone I also reduced the extent of lipid deposit formation in developing zebrafish. Conclusions: These findings demonstrate that tanshinone I has strong anti-adipogenic effects on 3T3-L1 cells and reduces adiposity in zebrafish, and these anti-adipogenic effect in 3T3-L1 cells are mediated through control of C/EBP-α, PPAR-γ, STAT-3, FAS, ACC, perilipin A, and AMPK.

Inhibitory effect of water-soluble mulberry leaf extract on hepatic lipid accumulation in high-fat diet-fed rats via modulation of hepatic microRNA-221/222 expression and inflammation (고지방식이 급여 쥐에서 수용성 뽕나무 잎 추출물의 간 microRNA-221/222 발현 및 염증 조절을 통한 간 지질 축적억제 효과)

  • Lee, Mak-Soon;Kim, Cheamin;Ko, Hyunmi;Kim, Yangha
    • Journal of Nutrition and Health
    • /
    • v.55 no.2
    • /
    • pp.227-239
    • /
    • 2022
  • Purpose: This study investigated the effects of water-soluble mulberry leaf extract (ME) on hepatic lipid accumulation in high-fat diet-fed rats via the regulation of hepatic microRNA (miR)-221/222 and inflammation. Methods: Male Sprague-Dawley rats (4 weeks old) were randomly divided into 3 groups (n = 7 each) and fed with 10 kcal% low-fat diet (LF), 45 kcal% high-fat diet (HF), or HF + 0.8% ME for 14 weeks. Lipid profiles and cytokine levels of the liver and serum were measured using commercial enzymatic colorimetric and enzyme-linked immunosorbent assay, respectively. The messenger RNA (mRNA) and miR levels in liver tissue were assayed by real-time quantitative reverse-transcription polymerase chain reaction. Results: Supplementation of ME reduces body weight and improves the liver and serum lipid profiles as compared to the HF group. The mRNA levels of hepatic peroxisome proliferator-activated receptor-gamma, sterol regulatory element binding protein-1c, fatty acid synthase, and fatty acid translocase, which are genes involved in lipid metabolism, were significantly downregulated in the ME group compared to the HF group. In contrast, the mRNA level of hepatic carnitine palmitoyl transferase-1 (involved in fatty acid oxidation) was upregulated by ME supplementation. Furthermore, administration of ME significantly downregulated the mRNA levels of inflammatory mediators such as hepatic tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), monocyte chemoattractant protein-1, and inducible nitric oxide synthase. The serum levels of TNF-α, IL-6, and nitric oxide were also significantly reduced in ME group compared to the HF group. Expression of hepatic miR-221 and miR-222, which increase in the inflammatory state of the liver, were also significantly inhibited in the ME group compared to the HF group. Conclusion: These results indicate that ME has the potential to improve hepatic lipid accumulation in high-fat diet-fed rats via modulation of inflammatory mediators and hepatic miR-221/222 expressions.

Comparison of Mycobacterium tuberculosis Specific Antigen Stimulation Time for Performing Interferon Gamma mRNA Assay for Detecting Latent Tuberculosis Infection

  • Kim, Sunghyun;Cho, Jang-Eun;Kim, Hyunjung;Lee, Dongsup;Jeon, Bo-Young;Lee, Hyejon;Cho, Sang-Nae;Kim, Young Keun;Lee, Hyeyoung
    • Biomedical Science Letters
    • /
    • v.19 no.2
    • /
    • pp.90-97
    • /
    • 2013
  • The tuberculin skin test (TST) and interferon gamma (IFN-${\gamma}$) release assay (IGRA) have been widely used for diagnosis of latent tuberculosis infection (LTBI). In order to overcome limitations of current LTBI diagnostic methods, the development of a novel molecular assay which is able to measure the IFN-${\gamma}$ messenger RNA (mRNA) expression level after stimulation with Mycobacterium tuberculosis (MTB) specific antigen was recently developed. The ability of a molecular assay to detect MTB infection was similar to commercial IGRA however, the optimal incubation time for stimulating IFN-${\gamma}$ was not yet established. Therefore, in this study the direct comparisons of MTB Ag stimulation times (4 and 24 hrs) were performed for diagnosis of MTB infection. Data showed that the coincident rate between QFT-GIT IFN-${\gamma}$ ELISA and IFN-${\gamma}$ RT-PCR (4 hrs) was 88.35% and that of QFT-GIT and IFN-${\gamma}$ RT-PCR (24 hrs) was 70.85%. Based on a receiver operating characteristic (ROC) curve, the 4 hrs-MTB specific Ag stimulation time for IFN-${\gamma}$ RT-PCR had the significant P value, 95% CI value, and AUC (P < 0.0001, 95% CI=0.82 to 1.02, and AUC=0.9214) in comparison with 24 hrs-MTB specific Ag stimulation time (P = 0.009, 95% CI=0.06 to 0.94, and AUC=0.7711). These results show that 4-hr was the most optimal MTB Ag stimulation time for performing IFN-${\gamma}$ RT-PCR. Although semi-quantitative RT-PCR had a few analytical limitations, it might be useful as an alternative molecular diagnostic method for detecting MTB infection.

Modulation of the Expression of the GABAA Receptor β1 and β3 Subunits by Pretreatment with Quercetin in the KA Model of Epilepsy in Mice -The Effect of Quercetin on GABAA Receptor Beta Subunits-

  • Moghbelinejad, Sahar;Rashvand, Zahra;Khodabandehloo, Fatemeh;Mohammadi, Ghazaleh;Nassiri-Asl, Marjan
    • Journal of Pharmacopuncture
    • /
    • v.19 no.2
    • /
    • pp.163-166
    • /
    • 2016
  • Objectives: Quercetin is a flavonoid and an important dietary constituent of fruits and vegetables. In recent years, several pharmacological activities of quercetin, such as its neuroprotective activity and, more specifically, its anti-convulsant effects in animal models of epilepsy, have been reported. This study evaluated the role of quercetin pretreatment on gene expression of ${\gamma}$-amino butyric acid type A ($GABA_A$) receptor beta subunits in kainic acid (KA)-induced seizures in mice. Methods: The animals were divided into four groups: one saline group, one group in which seizures were induced by using KA (10 mg/kg) without quercetin pretreatment and two groups pretreated with quercetin (50 and 100 mg/kg) prior to seizures being induced by using KA. Next, the messenger ribonucleic acid (mRNA) levels of the $GABA_A$ receptor ${\beta}$ subunits in the hippocampus of each animal were assessed at 2 hours and 7 days after KA administration. Quantitative real-time polymerase chain reaction (RT-PCR) assay was used to detect mRNA content in hippocampal tissues. Results: Pretreatments with quercetin at doses of 50 and 100 mg/kg prevented significant increases in the mRNA levels of the ${\beta}_1$ and the ${\beta}_3$ subunits of the $GABA_A$ receptor at 2 hours after KA injection. Pretreatment with quercetin (100 mg/kg) significantly inhibited ${\beta}_1$ and ${\beta}_3$ gene expression in the hippocampus at 7 days after KA injection. But, this inhibitory effect of quercetin at 50 mg/kg on the mRNA levels of the ${\beta}_3$ subunit of the $GABA_A$ receptor was not observed at 7 days after KA administration. Conclusion: These results suggest that quercetin (100 mg/kg) modulates the expression of the $GABA_A$ receptor ${\beta}_1$ and ${\beta}_3$ subunits in the KA model of epilepsy, most likely to prevent compensatory responses. This may be related to the narrow therapeutic dose range for the anticonvulsant activities of quercetin.