• 제목/요약/키워드: mesoporous $TiO_{2}$

검색결과 80건 처리시간 0.031초

Reduced Titania Films with Ordered Nanopores and Their Application to Visible Light Water Splitting

  • Shahid, Muhammad;Choi, Seo-Yeong;Liu, Jingling;Kwon, Young-Uk
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권8호
    • /
    • pp.2271-2275
    • /
    • 2013
  • We report on the photoelectrochemical properties of partially reduced mesoporous titania thin films. The fabrication is achieved by synthesizing mesoporous titania thin films through the self-assembly of a titania precursor and a block copolymer, followed by aging and calcination, and heat-treatment under a $H_2$ (1 torr) environment. Depending on the temperature used for the reaction with $H_2$, the degree of the reduction (generation of oxygen vacancies) of the titania is controlled. The oxygen vacancies induce visible light absorption, and decrease of resistance while the mesoporosity is practically unaltered. The photoelectrochemical activity data on these films, by measuring their photocurrent-potential behavior in 1 M NaOH electrolyte under AM 1.5G 100 mW $cm^{-2}$ illumination, show that the three effects of the oxygen vacancies contribute to the enhancement of the photoelectrochemical properties of the mesoporous titania thin films. The results show that these oxygen deficient $TiO_2$ mesoporous thin films hold great promise for a solar hydrogen generation. Suggestions for the materials design for improved photoelectrochemical properties are made.

Performances and Electrical Properties of Vertically Aligned Nanorod Perovskite Solar Cell

  • Kwon, Hyeok-Chan;Kim, Areum;Lee, Hongseuk;Lee, Eunsong;Ma, Sunihl;Lee, Yung;Moon, Jooho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.429-429
    • /
    • 2016
  • Organolead halide perovskite have attracted much attention over the past three years as the third generation photovoltaic due to simple fabrication process via solution process and their great photovoltaic properties. Many structures such as mesoporous scaffold, planar heterojunction or 1-D TiO2 or ZnO nanorod array structures have been studied to enhance performances. And the photovoltaic performances and carrier transport properties were studied depending on the cell structures and shape of perovskite film. For example, the perovskite cell based on TiO2/ZnO nanorod electron transport materials showed higher electron mobility than the mesoporous structured semiconductor layer due to 1-D direct pathway for electron transport. However, the reason for enhanced performance was not fully understood whether either the shape of perovskite or the structure of TiO2/ZnO nanorod scaffold play a dominant role. In this regard, for a clear understanding of the shape/structure of perovskite layer, we applied anodized aluminum oxide material which is good candidate as the inactive scaffold that does not influence the charge transport. We fabricated vertical one dimensional (1-D) nanostructured methylammonium lead mixed halide perovskite (CH3NH3PbI3-xClx) solar cell by infiltrating perovskite in the pore of anodized aluminum oxide (AAO). AAO template, one of the common nanostructured materials with one dimensional pore and controllable pore diameters, was successfully fabricated by anodizing and widening of the thermally evaporated Al film on the compact TiO2 layer. Using AAO as a scaffold for perovskite, we obtained 1-D shaped perovskite absorber, and over 15% photo conversion efficiency was obtained. I-V measurement, photoluminescence, impedance, and time-limited current collection were performed to determine vertically arrayed 1-D perovskite solar cells shaped in comparison with planar heterojunction and mesoporous alumina structured solar cells. Our findings lead to reveal the influence of the shape of perovskite layer on photoelectrical properties.

  • PDF

염료 감응형 태양전지에서 Mesoproso $TiO_2$/FTO 사이에 완충층으로써의 PLD로 증착한 $TiO_2$ 박막에 관한 연구 (A Study on $TiO_2$ Thin Film by PLD for Buffer Layer between Mesoproso $TiO_2$ and FTO of Dye-sensitized Solar Cell)

  • 송상우;김성수;노지형;이경주;문병무;김현주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.424-424
    • /
    • 2008
  • Dye-sensitized Solar Cell (DSC) is a new type of solar cell by using photocatalytic properties of $TiO_2$. The electric potential distribution in DSCs has played a major role in the operation of such cells. Models based on a built-in electric field which sets the upper limit for the open circuit voltage(Voc) and/or the possibility of a Schottky barrier at the interface between the mesoporous wide band gap semiconductor and the transparent conducting substrate have been presented. $TiO_2$ thin films were deposited on the FTO substrate by Nd:YAG Pulsed Laser Deposition(PLD) at room temperature and post-deposition annealing at $500^{\circ}C$ in flowing $O_2$ atmosphere for 1 hour. The structural properties of $TiO_2$ thin films have investigated by X-ray diffraction(XRD) and atomic force microscope(AFM). Thickness of $TiO_2$ thin films were controlled deference deposition time and measurement by scanning electron microscope(SEM). Then we manufactured a DSC unit cells and I-V and efficiency were tested using solar simulator.

  • PDF

패턴 된 기판 위에 형성된 메조포러스 $TiO_2$막 형성 기구 및 미세구조 연구

  • 안흥배;남우현;이정용;김영헌
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.469-469
    • /
    • 2011
  • 고효율 염료감응형 태양전지(DSSC, Dye-Sensitized Solar Cell)의 구현을 위해서 유용한 방법중 하나는 정렬된 기공 (pore)을 $TiO_2$막 내에 형성시키는 것이다. 메조포러스 (mesoporous) $TiO_2$막은 dip coating이나 spin coating과 같은 방법으로 주로 증착되고 있으며, P123이나 F127과 같은 amphiphilic triblock copolymer를 메조포러스 구조를 만들기 위한 뼈대로 사용하고 있다. 또한, 이렇게 생성된 구조에서 amphiphilic triblock copolymer는 열처리 공정을 통하여 쉽게 제거될 수 있다. 고효율 태양전지를 구현하는 또 다른 방법으로는 패턴 된 기판을 사용하는 것이다. 패턴 된 기판은 빛의 반사를 억제하여 흡수율을 높이는 역할을 한다. 그러나 패턴 된 기판 위에서 메조포러스 $TiO_2$막의 형성에 관한 연구는 부족한 실정이다. 본 연구에서는 spin coating 방법으로 패턴 된 Si (111) 기판 위에 메조포러스 $TiO_2$를 성장하고 그 미세구조를 분석하였다. 패턴 된 기판은 nanosphere lithography(NSL) 법으로 mask를 증착한 후 건식 식각 (dry etching) 공정을 통해서 제작되었으며, 마스크와 불순물 등 은 초음파 세척 등으로 제거되었다. 메조포러스 $TiO_2$막은 1-propanol, P123, titanium isopropoxide와 HCl을 섞어 만든 용액으로 1 cm${\times}$1 cm 기판 위에 3000 rpm과 4000 rpm으로 각각 증착하였으며, 5일 동안 4도에서 에이징한 후 350도에서 3시간 열처리하였다. 이렇게 형성한 메조포러스 막의 형상과 미세구조적 특성이 주사전자현미경(SEM, scanning electron microscope), X-선 회절(XRD, X-ray diffraction) 등을 이용하여 연구되었다. 특히, 증착 조건에 따른 메조포러스 $TiO_2$박막의 형성 기구에 관한 고찰이 진행되었다. 나아가, $TiO_2$박막과 패턴 사이에 형성되는 계면 구조에 관한 연구를 투과전자현미경을 이용하여 진행하였다.

  • PDF

Characterization of TiO2 Nanocrystalline Films for High Performance Dye-Sensitized Solar Cells

  • Jung, Heung-Joe
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권3호
    • /
    • pp.123-126
    • /
    • 2011
  • Titanium dioxide ($TiO_2$) thin films were deposited by the sol-gel method with a surfactant-assisted mechanism. Its application for dye-sensitized solar cells (DSSCs) was investigated. Brunauer-Emmett-Teller, X-ray diffraction and field emission scanning electron microscopy techniques were used to characterize the surface characteristics of thin films. Photovoltaic-current density measurements were performed to determine the photoelectrochemical properties of the thin films and the performance of DSSCs. Energy conversion efficiency of about 6.1% was achieved for cells with conductive glass under illumination with AM 1.5 (100 $mWcm^{-2}$) simulated sunlight. Investigation showed higher photo-energy conversion efficiency for mesoporous $TiO_2$ nanocrystalline films used in DSSCs relative to commercially available Degussa P25 films.

유기물 템플레이트를 이용한 다공성 티타늄 산화물의 합성 및 염료감응 태양전지로의 적용 (Synthesis of porous $TiO_2$ using organic-templating and application for dye-sensitized solar cells)

  • 이진규;오제경;김현수;박경원
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.147-149
    • /
    • 2009
  • 가수분해 및 응축반응을 사용하여 다공성의 TiO2입자를 합성하였다. 다공성 구조의 열적 영향을 살펴보기위해 annealing 시간을 조절하였고 태양전지에 적용하기 위해 paste로 만들었다. 그 구조적 특성을TEM(Transmission electron microscopy)과 XRD(X-ray diffraction) 통하여 분석하였고 광 전기화학적 활성을 측정해 보았다. 결과적으로 3시간 열처리한 시료의 효율이 최적화된 조건이였음을 확인하였다.

  • PDF

강유전체 BiFeO3가 증착된 TiO2 전극을 이용한 염료감응형 태양전지의 효율 향상 (Ferroelectric BiFeO3-coated TiO2 Electrodes for Enhanced Photovoltaic Properties of Dye-sensitized Solar Cells)

  • 주호용;홍수봉;이호상;전지훈;박배호;홍성철;최택집
    • 한국전기전자재료학회논문지
    • /
    • 제26권3호
    • /
    • pp.198-203
    • /
    • 2013
  • Dye-sensitized solar cells (DSSCs) based on titanium dioxide ($TiO_2$) have been extensively studied because of their promising low-cost alternatives to conventional semiconductor based solar cells. DSSCs consist of molecular dye at the interface between a liquid electrolyte and a mesoporous wide-bandgap semiconductor oxide. Most efforts for high conversion efficiencies have focused on dye and liquid electrolytes. However, interface engineering between dye and electrode is also important to reduce recombination and improve efficiency. In this work, for interface engineering, we deposited semiconducting ferroelectric $BiFeO_3$ with bandgap of 2.8 eV on $TiO_2$ nanoparticles and nanotubes. Photovoltaic properties of DSSCs were characterized as a function of thickness of $BiFeO_3$. We showed that ferroelectric $BiFeO_3$-coated $TiO_2$ electrodes enable to increase overall efficiency of DSSCs, which was associated with efficient electron transport due to internal electric field originating from electric polarization. It was suggested that engineering the dye-$TiO_2$ interface using ferroelectric materials as inorganic modifiers can be key parameter for enhanced photovoltaic performance of the cell.

ZnO nanostructures for e-paper and field emission display applications

  • Sun, X.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.993-994
    • /
    • 2008
  • Electrochromic (EC) devices are capable of reversibly changing their optical properties upon charge injection and extraction induced by the external voltage. The characteristics of the EC device, such as low power consumption, high coloration efficiency, and memory effects under open circuit status, make them suitable for use in a variety of applications including smart windows and electronic papers. Coloration due to reduction or oxidation of redox chromophores can be used for EC devices (e-paper), but the switching time is slow (second level). Recently, with increasing demand for the low cost, lightweight flat panel display with paper-like readability (electronic paper), an EC display technology based on dye-modified $TiO_2$ nanoparticle electrode was developed. A well known organic dye molecule, viologen, was adsorbed on the surface of a mesoporous $TiO_2$ nanoparticle film to form the EC electrode. On the other hand, ZnO is a wide bandgap II-VI semiconductor which has been applied in many fields such as UV lasers, field effect transistors and transparent conductors. The bandgap of the bulk ZnO is about 3.37 eV, which is close to that of the $TiO_2$ (3.4 eV). As a traditional transparent conductor, ZnO has excellent electron transport properties, even in ZnO nanoparticle films. In the past few years, one-dimension (1D) nanostructures of ZnO have attracted extensive research interest. In particular, 1D ZnO nanowires renders much better electron transportation capability by providing a direct conduction path for electron transport and greatly reducing the number of grain boundaries. These unique advantages make ZnO nanowires a promising matrix electrode for EC dye molecule loading. ZnO nanowires grow vertically from the substrate and form a dense array (Fig. 1). The ZnO nanowires show regular hexagonal cross section and the average diameter of the ZnO nanowires is about 100 nm. The cross-section image of the ZnO nanowires array (Fig. 1) indicates that the length of the ZnO nanowires is about $6\;{\mu}m$. From one on/off cycle of the ZnO EC cell (Fig. 2). We can see that, the switching time of a ZnO nanowire electrode EC cell with an active area of $1\;{\times}\;1\;cm^2$ is 170 ms and 142 ms for coloration and bleaching, respectively. The coloration and bleaching time is faster compared to the $TiO_2$ mesoporous EC devices with both coloration and bleaching time of about 250 ms for a device with an active area of $2.5\;cm^2$. With further optimization, it is possible that the response time can reach ten(s) of millisecond, i.e. capable of displaying video. Fig. 3 shows a prototype with two different transmittance states. It can be seen that good contrast was obtained. The retention was at least a few hours for these prototypes. Being an oxide, ZnO is oxidation resistant, i.e. it is more durable for field emission cathode. ZnO nanotetropods were also applied to realize the first prototype triode field emission device, making use of scattered surface-conduction electrons for field emission (Fig. 4). The device has a high efficiency (field emitted electron to total electron ratio) of about 60%. With this high efficiency, we were able to fabricate some prototype displays (Fig. 5 showing some alphanumerical symbols). ZnO tetrapods have four legs, which guarantees that there is one leg always pointing upward, even using screen printing method to fabricate the cathode.

  • PDF

Effect of Sulfation on Physicochemical Properties of ZrO2 and TiO2 Nanoparticles

  • Wijaya, Karna;Pratika, Remi Ayu;Fitri, Edhita Rahmawati;Prabani, Prisnu Fadilah;Candrasasi, Yufinta;Saputri, Wahyu Dita;Mulijani, Sri;Patah, Aep;Wibowo, Arief Cahyo
    • 한국재료학회지
    • /
    • 제32권3호
    • /
    • pp.125-131
    • /
    • 2022
  • Effect of sulfation processes on the physicochemical properties of ZrO2 and TiO2 nanoparticles were thoroughly investigated. SO4/ZrO2 and SO4/TiO2 catalysts were synthesized to identify the acidity character of each. The wet impregnation method of ZrO2 and TiO2 nanoparticles was employed using H2SO4 with various concentrations of 0.5, 0.75, and 1 M, followed by calcination at 400, 500, and 600 ℃ to obtain optimum conditions of the catalyst synthesis process. The highest total acidity was found when using 1 M SO4/ZrO2-500 and 1 M SO4/TiO2-500 catalysts, with total acidity values of 2.642 and 6.920 mmol/g, respectively. Sulfation increases titania particles via agglomeration. In contrast, sulfation did not practically change the size of zirconia particles. The sulfation process causes color of both catalyst particles to brighten due to the presence of sulfate. There was a decrease in surface area and pore volume of catalysts after sulfation; the materials' mesoporous structural properties were confirmed. The 1 M SO4/ZrO2 and 1 M SO4/TiO2 catalysts calcined at 500 ℃ are the best candidate heterogeneous acid catalysts synthesized in thus work.