• Title/Summary/Keyword: mesophyll

Search Result 165, Processing Time 0.024 seconds

The Relationship Between Stomatal Opening and Photosynthetic Activity of the Mesophyll in Commelina Communis L.

  • Lee, Joon-Sang
    • Journal of Environmental Science International
    • /
    • v.15 no.12
    • /
    • pp.1109-1117
    • /
    • 2006
  • To investigate the influence of the mesophyll cells on stomatal opening in response to white light, the segments of isolated epidermis were transferred on partly exposed mesophyll cells of a leaf and stomatal apertures were measured. Transferring the isolated epidermis on partly exposed mesophyll cells of a leaf caused a marked increase on stomatal apertures while stomata in isolated epidermis incubated in MES buffer hardly opened. Mesophyll infiltration with photosynthetic inhibitors (DCMU, DCCD, $NaN_3$) was performed to elucidate the correlation between stomatal apertures and the degree of photosynthetic activity. It was found that transferring the isolated epidermis on partly exposed mesophyll cells of a leaf caused an increase of stomatal apertures depending on the degree of photosynthetic activities. In $NaN_3$ infiltrated leaf discs, transferring the fresh isolated epidermis on partly exposed mesophyll cells of a leaf showed no significant effect, but a slight increase on stomatal apertures. Isolated epidermis alone did not respond to the light properly, but if it was closely contacted with mesophyil cells, the stomata regained the ability of the light response. Therefore, it could be suggested that stomatai apertures were related with the degree of photosynthetic activity in the mesophyll cells.

Role of Mesophyll Morphology in Determination of Leaf Photosynthesis in Field Grown Soybeans (포장생육대두의 엽광합성과정에서 엽육세포 형태의 역할)

  • Yun, Jin Il;Lauer, Michael J.;Taylo, S.Elwynn
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.6
    • /
    • pp.560-567
    • /
    • 1991
  • Photosynthetic variation in field grown soybean [Glycine max (L.) Merr. cv Hodgson78] was studied in relation to leaf anatomical variation. Variations in mesophyll morphology were accentuated by manipulating source and sink size. At R3 stage, two treatments were started: one was thinning and continu-ous debranching(6. 5 plants rather than 26 plants per m of row and remaining plants were debranched weekly), and the other was continuous partial depodding (allowing only one pod to develop at each mainstem node). Gas exchange characteristics, mesophyll cell volume and surface area per unit leaf surface, and microclimatic parameters were measured on the intact terminal leaflet at the 10th node. Observations were made 5 times with 3 to 4 day intervals starting R4 stage. Two models were used to compute leaf photosynthetic rates: one considered no effect of mesophyll morphology on photosynthesis, and the other considered potential effects of variations in mesophyll cell volume and surface area on diffusion and biochemical processes. Seventy nine percent of total photosynthetic variations observed in the experiment was explained by the latter, while 69% of the same variations was explained by the former model. By incorporating the mesophyll morphology concept, the predictability was improved by 14.6% in the field condition. Additional Index Words: photosynthesis model, leaf anatomy, Glycine max (L.) Merr., mesophyll surface area, mesophyll cell volume.

  • PDF

Electron Microscopic Observations of Protoplast and Fusion Cell of Viola Species (Viola속 식물의 원형질체 및 융합세포의 전자현미경 관찰)

  • Chung, Yong-Mo;Im, Hyun-Hee;Son, Beung-Gu;Suh, Jung-Hae;Chung, Chung-Han;Kwon, Oh-Chang
    • Journal of Life Science
    • /
    • v.7 no.4
    • /
    • pp.282-288
    • /
    • 1997
  • To obtain a basic information on the development of Genus Viola, ultrastructure and electrofusion process between the two protoplasts from wild Viola callus cells and pansy mesophyll cells were observed with a scanning electron microscopy(SEM) and transmission electron microscopy(TEM). In the ultrastructural observation of wild viola callus protoplasts and pansy mesophyll protoplasts using SEM, their cell walls were removed completely. A knob-like formation was observed on the enlarge surface of viola callus protoplasts. On the surface of pansy mesophyll protoplasts net-like chloroplasts were observed. In SEM observation of pansy mesophyll protoplasts, chloroplasts devoid of membrane were observed on the surface the protoplasts. Pearl chain was formed by applying AC field of 200 V/cm at 1.0 MHz for 43 sec. The lysis of plasma membranes and fusion process occurred by applying a 1,600 V/cm DC pulse twice for 1 sec. After 1-2 hours of a DC pulse application, it was observed that the two protoplasts were fused completely into one cell. In TEM observation of the fused cell, many small vacuoles were located in the fusion area of the two protoplasts. Indeed, two distinct regions were observed during fusing process; in one region, a nucleus was found, while in the other region, both nucleus and nucleous were found.

  • PDF

Effect of Iron Ion on Cell Division and Microcallus Growth in Mesophyll Protoplast Cultures of Arabidopsis thaliana (철이온이 Arabidopsis thaliana 초기 원형질체배양의 세포분열 및 미세 캘러스 생장에 미치는 효과)

  • 박현용
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.6
    • /
    • pp.339-343
    • /
    • 1995
  • This study was performed to investigate the effect of iron ion on the mesophyll protoplast culture of Arabidopsis thaliana. Mesophyll protoplasts were isolated and cultured in a modified IMH medium supplemented with various concentrations of Fe-EDTA. Relatively low concentration of Fe-EDTA (<0.02 mM) induced the low level (4.8%) of cell division. In addition the cell division and microcallus growth were dose-dependently stimulated by 0 to 1 mM of Fe-EDTA. In 0.5 to 1 mM concentration range of Fe-EDTA, microcolonies were readily formed and the plating deficiency (8.5%) also showed maximal rate. However more than 1 mM of Fe-EDTA inhibited the initial growth of protoplase. The overall results suggest that Fe2+ion concentration plays an important role at the early developmental stage of protoplast regeneration.

  • PDF

Protoplast Fusion of Panax ginseng Callus and Aralia Continentalis Mesophyll (인삼 캘러스와 독활 엽육조직의 원형질체 융합)

  • Park, Jong-Bum
    • Journal of Environmental Science International
    • /
    • v.17 no.2
    • /
    • pp.163-170
    • /
    • 2008
  • Protoplasts of Panax ginseng C. A. Meyer and Aralia continentalis K. (Araliaceae) were isolated from callus cells and mesophyll cells, respectively. The maximum yield of protoplasts isolated from callus cells of P. ginseng were obtained by incubation for 3 hrs in the enzyme mixture of 0.5% macerozyme, 1.5% cellulase, and 0.5 M mannitol as an osmoticum. In the case of mesophyll cells of A. continentalis, the highest yield of protoplasts were obtained by incubation for 5 hrs in the enzyme mixture of 1% macerozyme, 2% cellulase, and 0.6 M mannitol. A polyethylene glycol (PEG) treatment induced an intergeneric fusion of the protoplasts. The fusion products, that is, heterokaryocytes were obtained by treatment of 50% PEG containing 0.05 M Ca salts.

Immunocytolocalization of Cell Wall Peroxidase and Other Wall Antigens from Maize Seedlings

  • Kim, Sung-Ha
    • Journal of Plant Biology
    • /
    • v.39 no.2
    • /
    • pp.99-105
    • /
    • 1996
  • Immunocytochemistry utilizes the specificity of the antigen-antibody reaction to localize specific antigens in cells or cellular organelles. Here we report the use of monoclonal antibodies, in conjunction with gold-labeled second antibodies to study the ultrastructural localization and tissue distribution of the Mr 98, 000 anionic peroxidase and other wall antigens. The antibody specific for this wall peroxidase, mWP3, labeled mainly the cell wall area. At the tissue level, the Mr 98, 000 peroxidase is located predominantly in the leaf mesophyll, internal coleoptile and sieve elements, but not in the root, as assayed with these procedures. The coleoptile walls were less heavily stained than the walls of leaf mesophyll cells. At the subcellular level, it is localized mainly in intercellular regions of the cell walls. A similar staining pattern was revealed by mWP19, one of anti-$\beta$ glucosidase antibody, though it looked less heavily stained than one with mWP3. In order to serve as a control wall staining using IgM monoclonal antibodies, mWP18 was used. Most of the label is localized over wall regions of cells of the young leaf mesophyll and coleoptile.

  • PDF

Ultrastructural Feature and Photobleaching of ginseng Chloroplasts (인삼 엽록체의 미세구조와 Photobleaching)

  • 양덕조;김명원
    • Journal of Ginseng Research
    • /
    • v.14 no.3
    • /
    • pp.416-420
    • /
    • 1990
  • Ultrastructural and anatomical features of the leaf were studied in Panax ginseng C.A. Meyer(ginseng). The ginseng leaf poorly developed palisade tissue and the size of mesophyll cell was larger and the chloroplast density was lower than that of Glycine max (soyben). Ginseng chloroplast was filled with highly stacked grana and condensely-arrayed thylakoid, so the stroma space was hardly absorbed. However, ginseng mesophyll tissue and chloroplast array did not reduce light energy entering the mesophyll chloroplast, and the high LHCP/CP ratio of ginseng thylakoid resulted in the absorption of excess photon. It is reasonable to assume that 1O1-photogenearation by excess light energy partially resulted from the anatomical and ultrastructural characteristics of the ginseng leaf.

  • PDF

옥수수 엽육세포 및 유관속초세포의 엽록체막 지질성분의 비교

  • 조성호
    • Journal of Plant Biology
    • /
    • v.36 no.1
    • /
    • pp.97-104
    • /
    • 1993
  • The lipid composition of thylakoid membranes was compared between mesophyll and bundle sheath chloroplasts of maize. According to mild-denaturing gel electrophoresis, mesophyll thylakoids contained both PS I complex and PS II light-harvesting chlorophyll-protein complex(LHCP), while those of bundle sheath cells contained mainly PS I complex. The amount of lipids per mg chlorophyll was higher in bundle sheath thylakoids than in mesophyll. The major polar lipid classes were monogalactosyldiacylglycerol(MGDG), digalactosyldiacylglycreol, sulfolipid and phosphatidylglycerol (PG) in both tissues. Linolenic acid(18 : 3), linoleic acid(18 : 2) and palmitic acid(16 : 0) were the main fatty acyl components, with higher ratio of unsaturated to saturated fatty acids in bundle sheath thylakoids, suggesting these membranes are more fluid. The most striking difference in lipid composition between the two kinds of tissues was the practical absence of trans- 3-hexadecenoic acid(16 : 1t) in PG of bundle sheath thylakoids. This fatty acid is known to be involved in the association of LHCP as oligomeric form. More than 80% of MGDG molecular species was 18 : 3, 18 : 3, demonstrating that maize is a typical 18 : 3 plant. Therefore, the possibility of the functional relationships between the lamella structure, and thus the distribution of photosystems, and MGDG molecular species was excluded.

  • PDF

The Effects of Light and $CO_2$ on the Changes of Electrical Potential Difference in Isolated Epidermis and Intact Leaves of Commeina communis L

  • Lee Joon-Sang
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.3 s.59
    • /
    • pp.221-227
    • /
    • 2005
  • The effects of light and $CO_2$ on the electrophysiological characteristics of guard cells in the intact leaf and isolated epidermis have been investigated. Fast hyperpolarization of guard cell apoplastic PD in the intact leaf was recorded reaching up to around 7 mV and 20 mV in response to light and $CO_2$. Whenever the experiments were attempted with isolated epidermis, there was no response to light and $CO_2$. In order to determine the influence of the mesophyll cells, the apoplastic PD of guard cells in isolated epidermis was measured in the presence of the mesophyll supernatant or the control medium. The apoplastic PD in isolated epidermis was hyperpolarized to -7mV, changing from -22mV to -29mV at 40 min. But, when isolated epidermis was incubated with the supernatant from mesophyll cells incubated in the light, the apoplastic PD in isolated epidermis was hyperpolarized to -19 mV, changing from -22 mV to -40.5 mV. $CO_2$ also caused a change of 0.1 to 0.3 pH unit in the intact leaf. However, this change was absent in isolated epidermis. A vibrating probe was used to detect the change in electrical currents at the surface of excised intact leaves and isolated epidermis. The reading of excised intact leaves in the dark was $0.5\muA\;cm^{-2},$ remaining steady until illuminated. Light increased the current on the surface of excised leaves to about $0.8\muA\;cm^{-2},$. However, light had no effect in the current on the surface of isolated epidermis. Apoplastic pH changes across the stomatal complex in response to light and dark were measured both in the intact leaves and isolated epidermis over the same time period using pH micro-electrodes. The guard cell wall of intact leaf was acidified to 2.5 pH unit, falling from pH 7.5 to pH 5.0 in the first 10 min. in the light. At the same time the guard cell wall pH of isolated epidermis fell from pH 7.5 to pH 7.0 at 10 min. The guard cell wall pH of isolated epidermis incubated in the mesophyll supernatant fell from pH 7.6 to pH 6.7 at 10 min. Likewise, It could be imagined that an electrical signal, chemicals and hormones propagated from the mesophyll in response to light and $CO_2$ could control a fast stomatal response.

Photosynthesis of Guard Cell Chloroplast

  • Goh, Chang-Hyo
    • Journal of Photoscience
    • /
    • v.6 no.1
    • /
    • pp.29-36
    • /
    • 1999
  • Chlorophasts are a central structural feature of stomatal guard cells. Guard cell chloroplasts have both photosystems I and II (PS I and II), carry out O2 evoluation , cyclic and noncyclic photophosporylation, and possess the Calvin-Benson cycle enzymes involved in CO2 fixation. These imply that guard cell chloroplasts have a normal photosynthetic carbon reduction pathway just like their mesophyll counterparts, indicating similar fuctional organization of thylakoid membranes in both types of mesophyll and guard cell chloroplasts. It has been, however, found that guard cell chloroplasts have distinctive and comparative properties in their photosynthetic performance. In this article, I review the intrinsic features on the light reaction of and carbon reduction by guard cell chloroplasts.

  • PDF