• Title/Summary/Keyword: mesophilic biofilter

Search Result 3, Processing Time 0.016 seconds

Thermophilic Biofiltration of Benzene and Toluene

  • Cho, Kyung-Suk;Yoo, Sun-Kyung;Ryu, Hee-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.1976-1982
    • /
    • 2007
  • In the current studies, we characterized the degradation of a hot mixture of benzene and toluene (BT) gases by a thermophilic biofilter using polyurethane as a packing material and high-temperature compost as a microbial source. We also examined the effect of supplementing the biofilter with yeast extract (YE). We found that YE substantially enhanced microbial activity in the thermophilic biofilter. The degrading activity of the biofilter supplied with YE was stable during long-term operation (approximately 100 d) without accumulating excess biomass. The maximum elimination capacity ($1,650\;g{\cdot} m^{-3}{\cdot} h^{-1}$) in the biofilter supplemented with YE was 3.5 times higher than that in the biofilter without YE ($470\;g{\cdot} m^{-3}{\cdot} h^{-1}$). At similar retention times, the capacity to eliminate BT for the YE-supplemented biofilter was higher than for previously reported mesophilic biofilters. Thus, thermophilic biofiltration can be used to degrade hydrophobic compounds such as a BT mixture. Finally, 168 rDNA polymerase chain reaction-DGGE (PCR-DGGE) fingerprinting revealed that the thermophilic bacteria in the biofilter included Rubrobacter sp. and Mycobacterium sp.

Effect of Hydrophilic- and Hydrophobic-Media on the Fermentative Hydrogen Production in Trickling Bed Biofilter (생물학적 수소생산을 위한 Trickling Bed Biofilter에서의 친수성과 소수성 담체의 영향)

  • Jeon, Byung-Seung;Lee, Sun-Mi;Kim, Yong-Hwan;Chae, Hee-Jeong;Sang, Byoung-In
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.465-469
    • /
    • 2006
  • Two mesophilic trickling bed bioreactors filled with two different types of media, hydrophilic- and hydrophobic-cubes, were designed and tested for hydrogen production via anaerobic fermentation of sucrose. Each reactor consisted of a column packed with polymeric cubes and inoculated with heat-treated sludge obtained from anaerobic digestion tank. A defined medium containing sucrose was fed with changing flow rate into the capped reactor, hydraulic retention time and recycle rate. Hydrogen concentrations in gas-phase were constant, averaging 40% for all conditions tested. Hydrogen production rates increased up to $10.5 L{\cdot};h^{-1}{\cdot}L^{-1}$ of reactor when influent sucrose concentrations and recycle rates were varied. Hydrophobic media provided higher value of hydrogen production rate than hydrophilic media at the same operation conditions. No methane was detected when the reactor was under a normal operation. The major fermentation by-products in the liquid effluent of the both trickling biofilters were acetate and butyrate. The reactor filled with hydrophilic media became clogged with biomass and bio gas, requiring manual cleaning of the system, while no clogging occurred in the reactor with hydrophobic media. In order to make long-term operation of the reactor filled with hydrophilic media feasible, biofilm accumulation inside the media in the reactor with hydrophilic media and biogas produced from the reactor will need to be controlled through some process such as periodical backwashing or gas-purging. These tests using trickling bed biofilter with hydrophobic media demonstrate the feasibility of the process to produce hydrogen gas in a trickle-bed type of reactor. A likely application of this reactor technology could be hydrogen gas recovery from pre-treatment of high carbohydrate-containing wastewaters.

  • PDF

The Fermentative Hydrogen Production in Trickling Bed Biofilter Filled with Hydrophilic-and Hydrophobic-Media (소수성 및 친수성 담체를 이용한 Trickling Bed Biofilter의 생물학적 수소생산)

  • Jeon, Byung-Seung;Lee, Sun-Mi;Kim, Yong-Hwan;Gu, Man-Bock;Chae, Hee-Jeong;Sang, Byoung-In
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.4
    • /
    • pp.379-388
    • /
    • 2006
  • Two mesophilic trickling bed bioreactors filled with two different types of media, hydrophilic- and hydrophobic-cubes, were designed and conducted for hydrogen production under the anaerobic fermentation of sucrose. Each bioreactor consisted of the column packed with polymeric cubes and inoculated with heat-treated sludge obtained from anaerobic digestion tank. A defined medium containing sucrose was fed by the different hydraulic retention time(HRT), and recycle rate. Hydrogen concentrations in gas-phase were constant, averaging 40% of biogas throughout the operation. Hydrogen production rate was increased till $10.5\;L{\cdot}h^{-1}{\cdot}L^{-1}$ of bioreactor when influent sucrose concentrations and recycle rates were varied. At the same time, the hydrogen production rate with hydrophobic media application was higher than its hydrophilic media application. No methane was detected when the reactor was under a normal operation. The major fermentation by-products in the liquid effluent of the both trickling biofilters were acetate, butyrate and lactate. In order to run in the long term operation of both reactor filled with hydrophilic and hydrophobic media, biofilm accumulation on hydrophilic media and biogas produced should be controlled through some process such as periodical backwashing or gas-purging. Four sample were collected from each reactor on the opposite hydrogen production rate, and their bacterial communities were compared by terminal restriction fragment length polymorphism (T-RFLP) analysis of PCR products generated using bacterial 16s rRNA gene primers (8f and 926r). It was expressed a marked difference in bacterial communities of both reactors. The trickling bed bioreactor with hydrophobic media demonstrates the feasibility of the process to produce hydrogen gas. A likely application of this reactor technology can be hydrogen gas recovery from pre-treatment of high carbohydrate-containing wastewaters.