• 제목/요약/키워드: mesial cantilever

검색결과 9건 처리시간 0.024초

EFFECT OF NUMBER OF IMPLANTS AND CANTILEVER DESIGN ON STRESS DISTRIBUTION IN THREE-UNIT FIXED PARTIAL DENTURES: A THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS

  • Park, Ji-Hyun;Kim, Sung-Hun;Han, Jung-Suk;Lee, Jai-Bong;Yang, Jae-Ho
    • 대한치과보철학회지
    • /
    • 제46권3호
    • /
    • pp.290-297
    • /
    • 2008
  • STATEMENT OF PROBLEM: Implant-supported fixed cantilever prostheses are influenced by various biomechanical factors. The information that shows the effect of implant number and position of cantilever on stress in the supporting bone is limited. PURPOSE: The purpose of this study was to investigate the effect of implant number variation and the effect of 2 different cantilever types on stress distribution in the supporting bone, using 3-dimensional finite element analysis. MATERIAL AND METHODS: A 3-D FE model of a mandibular section of bone with a missing second premolar, first molar, and second molar was developed. $4.1{\times}10$ mm screw-type dental implant was selected. 4.0 mm height solid abutments were fixed over all implant fixtures. Type III gold alloy was selected for implant-supported fixed prostheses. For mesial cantilever test, model 1-1 which has three $4.1{\times}10$ mm implants and fixed prosthesis with no pontic, model 1-2 which has two $4.1{\times}10$ mm implants and fixed prosthesis with a central pontic and model 1-3 which has two $4.1{\times}10$ mm implants and fixed prosthesis with mesial cantilever were simulated. And then, 155N oblique force was applied to the buccal cusp of second premolar. For distal cantilever test, model 2-1 which has three $4.1{\times}10$ mm implants and fixed prosthesis with no pontic, model 2-2 which has two $4.1{\times}10$ mm implants and fixed prosthesis with a central pontic and model 2-3 which has two $4.1{\times}10$ mm implants and fixed prosthesis with distal cantilever were simulated. And then, 206N oblique force was applied to the buccal cusp of second premolar. The implant and superstructure were simulated in finite element software(Pro/Engineer wildfire 2.0). The stress values were observed with the maximum von Mises stresses. RESULTS: Among the models without a cantilever, model 1-1 and 2-1 which had three implants, showed lower stress than model 1-2 and 2-2 which had two implants. Although model 2-1 was applied with 206N, it showed lower stress than model 1-2 which was applied with 155N. In models that implant positions of models were same, the amount of applied occlusal load largely influenced the maximum von Mises stress. Model 1-1, 1-2 and 1-3, which were loaded with 155N, showed less stress than corresponding model 2-1, 2-2 and 2- 3 which were loaded with 206N. For the same number of implants, the existence of a cantilever induced the obvious increase of maximum stress. Model 1-3 and 2-3 which had a cantilever, showed much higher stress than the others which had no cantilever. In all models, the von Mises stresses were concentrated at the cortical bone around the cervical region of the implants. Meanwhile, in model 1-1, 1-2 and 1-3, which were loaded on second premolar position, the first premolar participated in stress distribution. First premolars of model 2-1, 2-2 and 2-3 did not participate in stress distribution. CONCLUSION: 1. The more implants supported, the less stress was induced, regardless of applied occlusal loads. 2. The maximum von Mises stress in the bone of the implant-supported three unit fixed dental prosthesis with a mesial cantilever was 1.38 times that with a central pontic. The maximum von Mises stress in the bone of the implant-supported three-unit fixed dental prosthesis with a distal cantilever was 1.59 times that with a central pontic. 3. A distal cantilever induced larger stress in the bone than a mesial cantilever. 4. A adjacent tooth which contacts implant-supported fixed prosthesis participated in the stress distribution.

하악구치 임플란트 지지 단일수복에서 근심 캔틸레버가 임플란트 합병증에 미치는 영향 (COMPLICATIONS OF THE IMPLANT-SUPPORTED POSTERIOR MANDIBULAR SINGLE RESTORATIONS WITH MESIAL CANTILEVER)

  • 신혜승;김명래;김선종
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제35권4호
    • /
    • pp.248-252
    • /
    • 2009
  • Purpose: This retrospective study was performed to analyze the relationship between complications of the posterior mandibular single crowns and distance from the adjacent teeth to the implant. Subjects and Methods: Of the patients who presented Ewha Womans University Mokdong Hospital & Yonsei University Dental Hospital with missing of the posterior mandibular molar and restored with implant-supported 18 Single crowns between 1996 thru 2007, 115 patients had been followed after crown delivery. The subjects were divided into complication-followed group and a control without any problems. The distance from the most distal tooth to the implant were measured. The prosthetic & biologic complications were reviewed by the cantilever distance and analyzed by abutment type, age & gender statistically using SAS version 9.1 (SAS Inc., USA). Results and Conclusion The results were as follows; 1) The posterior mandibular single crown with cantilever showed higher incidence of follow-up complications upon logistic analysis (p<0.05). 2) The prosthetic and biologic complications are related with the cantilever distance with 2.1 odds ratio and 3.39 cut-off value of specificity & sensitivity by SPSS 12.0. 3) The complications are neither significant in abutment types nor age & gender.

상악측절치 수복을 위한 Cantilever bridge (STRESS ANALYSIS ON THE ALVEOLAR BONE OF CANTILEVER BRIDGES REPLACING MAXILLARY LATERAL INCISOR)

  • 김형수;양홍서
    • 대한치과보철학회지
    • /
    • 제31권3호
    • /
    • pp.303-316
    • /
    • 1993
  • The purpose of this study was to analysis the stress distribution induced by three unit PFM bridges and various cantilever bridges replacing maxillary latersal incisor. The simplified two-dimensional photoelastic models used for this study was contructed in the folio- wing way. CR/R ratio was designed to be 1 : 1, 1 : 1.25 and 1 : 1.5. The pontics of cantilever bridge supported by maxillary canines consisted of wrap-around type, rest-extension type, and simple type. 3-unit PFM bridge was constructed with traditional method. 1kg vertical static load was applied on the center of the incisal edge of the pontic. The stress pattern was examined and recorded by photography. The results obtained were as follows ; 1. The magnitude of stress on the abutment root apex area of a traditional 3-unit bridge was the lowest. 2. The model of cantilevered pontic with a rest showed the relatively well distributed stress around the abutment tooth. The model with simple pontic generated the greatest stress concentration in the supporting structure of the abutment tooth. 3. As the height of bone level reduced, the rotational and vertical force increased around the abutment tooth. 4. The stress concentration of the 3-unit bridges occured on the root apex and stress concentration of the cantilever briage occured on the root apex and cervix area, 5. In the case of the cantilever bridge, stress concentrated distally on the root apex area of the abutment tooth and additional stress was observed mesially on the upper part of the root. Especially in the case of the simple pontic, was phenomenon was more apparent than the others. 6. Force applied to cantilevered pontic was transmitted to the adjacent central incisor through the contact surface. Stress was markedly observed on the mesial cervix area in the case of simple pontic and on the root apex area in the case of wrap-around type and rest-extension type.

  • PDF

임플란트 지지 캔틸레버 고정성 보철물 장착시 과두와 하악골의 응력 분포에 관한 3차원 유한요소법적 연구 (A Study on the Stress Distribution of Condylar Region and Edentulous Mandible with Implant-Supported Cantilever Fixed Prostheses by using 3-Dimensional Finite Element Method)

  • 김연수;이성복
    • 구강회복응용과학지
    • /
    • 제17권4호
    • /
    • pp.283-305
    • /
    • 2001
  • The purpose of this study was to analyze the stress distribution of condylar regions and edentulous mandible with implant-supported cantilever prostheses on the certain conditions, such as amount of load, location of load, direction of load, fixation or non-fixation on the condylar regions. Three dimensional finite element analysis was used for this study. FEM model was created by using commercial software, ANSYS(Swanson, Inc., U.S.A.). Fixed model which was fixed on the condylar regions was modeled with 74323 elements and 15387 nodes and spring model which was sprung on the condylar regions was modeled with 75020 elements and 15887 nodes. Six Br${\aa}$nemark implants with 3.75 mm diameter and 13 mm length were incorporated in the models. The placement was 4.4 mm from the midline for the first implant; the other two in each quardrant were 6.5 mm apart. The stress distribution on each model through the designed mandible was evaluated under 500N vertical load, 250N horizontal load linguobuccally, buccal 20 degree 250N oblique load and buccal 45 degree 250N oblique load. The load points were at 0 mm, 10 mm, 20 mm along the cantilever prostheses from the center of the distal fixture. The results were as follows; 1. The stress distribution of condylar regions between two models showed conspicuous differences. Fixed model showed conspicuous stress concentration on the condylar regions than spring model under vertical load only. On the other hand, spring model showed conspicuous stress concentration on the condylar regions than fixed model under 250N horizontal load linguobuccally, buccal 20 degree 250N oblique load and buccal 45 degree 250N oblique load. 2. Fixed model showed stress concentration on the posterior and mesial side of working and balancing condylar necks but spring model showed stress concentration on the posterior and mesial side of working condylar neck and the posterior and lateral side of balancing condylar neck under vertical load. 3. Fixed model showed stress concentration on the posterior and lateral side of working condylar neck and the anterior and mesial side of balancing condylar neck but spring model showed stress concentration on the anterior sides of working and balancing condylar necks under horizontal load linguobuccally. 4. Fixed model showed stress concentration on the posterior side of working condylar neck and the posterior and lateral side of balancing condylar neck but spring model showed stress concentration on the anterior side of working condylar neck and the anterior and lateral side of balancing condylar neck under buccal 20 degree oblique load. 5. Fixed model showed stress concentration on the anterior and lateral side of working condylar neck and the posterior and mesial side of balancing condylar neck but spring model showed stress concentration on the anterior side of working condylar neck and the anterior and lateral side of balancing condylar neck under buccal 45 degree oblique load.. 6. The stress distribution of bone around implants between two models revealed difference slightly. In general, magnitude of Von Mises stress was the greatest at the bone around the most distal implant and the progressive decrease more and more mesially. Under vertical load, the stress values were similar between implant neck and superstructure vertically, besides the greatest on the distal side horizontally. 7. Under horizontal load linguobuccally, buccal 20 degree oblique load and buccal 45 degree oblique load, the stress values were the greatest on the implant neck vertically, and great on the labial and lingual sides horizontally. After all, it was considered that spring model was an indispensable condition for the comprehension of the stress distributions of condylar regions.

  • PDF

Biomechanical considerations for uprighting impacted mandibular molars

  • Morita, Yukiko;Koga, Yoshiyuki;Nguyen, Tuan Anh;Yoshida, Noriaki
    • 대한치과교정학회지
    • /
    • 제50권4호
    • /
    • pp.268-277
    • /
    • 2020
  • This case report demonstrates two different uprighting mechanics separately applied to mesially tipped mandibular first and second molars. The biomechanical considerations for application of these mechanisms are also discussed. For repositioning of the first molar, which was severely tipped and deeply impacted, a novel cantilever mechanics was used. The molar tube was bonded in the buccolingual direction to facilitate insertion of a cantilever from the buccal side. By twisting the distal end of the cantilever, sufficient uprighting moment was generated. The mesial end of the cantilever was hooked over the miniscrew placed between the canine and first premolar, which could prevent exertion of an intrusive force to the anterior portion of the dentition as a side effect. For repositioning of the second molar, an uprighting mechanics using a compression force with two step bends incorporated into a nickel-titanium archwire was employed. This generated an uprighting moment as well as a distal force acting on the tipped second molar to regain the lost space for the first molar and bring it into its normal position. This epoch-making uprighting mechanics could also minimize the extrusion of the molar, thereby preventing occlusal interference by increasing interocclusal clearance between the inferiorly placed two step bends and the antagonist tooth. Consequently, the two step bends could help prevent occlusal interference. After 2 years and 11 months of active treatment, a desirable Class I occlusion was successfully achieved without permanent tooth extraction.

임플랜트 Overdenture의 Bar설계에 따른 하악지지조직의 광탄성학적 응력분석 (PHOTOELASTIC STRESS ANALYSIS ON THE MANDIBLE CAUSED BY IMPLANT OVERDENTURE)

  • 강정민;방몽숙
    • 대한치과보철학회지
    • /
    • 제32권2호
    • /
    • pp.327-353
    • /
    • 1994
  • This study was performed to evaluate the effects of number and alignment of implant fixture and various bar designs on the retention of denture and the stress distribution. Six kinds of photoelastic mandibular models and nine kinds of overdenture specimens were designed. A unilateral vertical load was gradually applied on the right first molar to calculate the maximal dislodgement load of each specimen. A unilateral vertical load of 17 Kgf was applied on the right first molar and a vertical load of 10 Kgf was applied on the interincisal edge region. The stress pattern which developed in each photoelastic model was analyzed by the reflection polariscope. The results obtained were as follows: 1. The maximal dislodgement load reversely increased with the distance from the loading point to the implant fixture, while it linearly increased with that from the most posterior implant fixture to the mesial clip. The maximal dislodgement load also increased with the use of a cantilever bar. 2. Under the posterior vertical load, the stress to the supporting tissue of the denture base increased with the distance from the loading point to the implant future. The stress concentration on the apical area of the implant future reversely increased with the distance from the loading point to the implant future. 3. In the overdentures supported by two implant fixtures under the posterior vertical load. the specimen implanted on lateral incisor areas with a cantilever bar exhibited more favorable stress distribution than that without a cantilever bar. The specimen implanted on the canine areas without a cantilever bar, however, exhibited more favorable stress distribution. 4. In the overdentures supported by three implant fixtures. the specimen implanted ell the midline and canine areas exhibited more favorable stress distribution than that implanted oil the midline and the first premolar areas. 5. In the overdentures supported by four implant fixtures. the specimen implanted with two adjacent implant fixtures exhibited more favorable stress distribution than that implanted at equal distance under the posterior vertical load. 6. Under the anterior vertical load, the overdentures supported by three implant fixtures exhibited stress concentration on the supporting structure of the middle implant future. In overdentures supported by two or four implant futures, no significant difference was noted in stress distribution between the types of bars. These results indicate that the greater the number of implant fixtures, the better the stress distribution is. A favorable stress distribution may be obtained in the overdentures supported by two or three implant fixtures, if the location and the design of the bar are appropriate.

  • PDF

임프란트를 이용한 고정성 계속가공의치의 FRAMEWORK 형태에 관한 연구 (A SUTDY ABOUT THE SHAPE OF THE FRAMEWORK OF THE FIXED BONE ANCHORED BRIDGE USING DENIAL IMPLANTS)

  • 김태균;이영수;유광희
    • 대한치과보철학회지
    • /
    • 제36권1호
    • /
    • pp.104-119
    • /
    • 1998
  • The purpose of this study was pertinent design of the framework of the fixed bone anchored bridge using implants in the edentulous mandible through analysis of stress distribution by the three dimensional finite element analysis method. The results were as follows: 1. The L-shaped framework was favorable in restoring the edentulous mandible by implants and fixed bone anchored bridge. 2. The structure of the framework should be designed to endure the occlusal load because of stress concentration at the most distal abutment of the framework. 3. The stress at the distal implant where cantilever starts was twice as much as that of other portions. 4. Compressive stress was generated on the framework of the mesial side of the distal implant and extrusive force was induced to the mesially positioned implants. 5. The height of vertical plate was high as possible as can be to distribute stresses concentrating bucco-lingually and labio-lingually in the framework between abutments, 6. Reinforcement of the horizontal plate thickness was needed because stress was loaded more on the horizontal plate than on the vertical plate of the framework. 7. Lengthening of the vertical plate can compensate for any limitations in horizontal plate width.

  • PDF

적합도가 다른 임플랜트 지지 보철물의 삼차원적 응력 분석 (Three dimensional stress analysis of implant-supported prosthesis with various misfit)

  • 양홍서;정현주;박영준;박상원
    • 구강회복응용과학지
    • /
    • 제17권4호
    • /
    • pp.307-314
    • /
    • 2001
  • To evaluate the effect of misfit in two implant-supported fixed partial dentures in the posterior of the mandible, variations of the standard finite element models were made by changing the location of the gap as follows: 1) no gap present; 2) located between the gold cylinder and the abutment on the distal implant; 3) gap located between the gold cylinder and the abutment on the mesial implant. The results of this study were as follows: 1. When the location of the gap was close to the load applied on the prosthesis, the stress in the prosthesis, implant components and surrounding bone increased. 2. The presence of cantilever increased the stress in the prosthesis, implant and surrounding bone significantly, regardless of the presence of the gap. 3. When there was a gap between the prosthesis and abutment, the stress in the bone around the implant increased. 4. When passive fit was achieved, the stress was distributed widely in each component with less peak stress in each component. 5. The inner structures of the implant components, the gold screw and the abutment screw bear more stress when the prosthesis did not exhibit passive fit with the abutments than when passive fit was present.

  • PDF

임플란트 고정성 보철물에서 수와 식립위치 변화에 따른 골과 임플란트에서의 응력분포에 관한 3차원 유한요소법적 연구 (Effect of the Number and Location of Implants on the Stress Distribution in Three-unit Fixed Partial Denture: A Three-Dimensional Finite Element Analysis)

  • 이우현;임종화;조인호
    • 구강회복응용과학지
    • /
    • 제26권3호
    • /
    • pp.221-239
    • /
    • 2010
  • 본 연구에서는 임플란트 지지 3-unit 고정성 보철물에서 임플란트의 수와 위치변화에 따른 지지골과 임플란트에서의 응력 분포를 삼차원 유한요소분석법으로 관찰하고자 하였다. 3개의 임플란트를 중심선 일직선상에 나란히 식립한 모델과 중심선에서 제1대구치 임플란트를 협측으로 1.5mm offset 시키고 나머지 임플란트는 설측으로 1.5mm offset 시킨 모델 및 이와 반대로 offset 시킨 모델 그리고 2개의 임플란트를 이용하여 양단 지지한 모델과 근심 및 원심 캔틸레버 모델을 만들고, 교합력도 제2소구치에만 155N을 작용한 경우, 제2대구치에만 206N을 작용한 경우, 제1소구치에는 155N, 제1, 2대구치에는 각각 206N을 동시에 적용한 경우에 대해 각각 협측 교두에 설측방향으로 $30^{\circ}$ 경사하중을 적용시켰을 때와 치아 중심와에 수직하중을 적용했을 때에 대해 유한요소법을 이용하여 골과 임플란트에 발생하는 응력 분포를 관찰하였다. 이 같은 실험 결과를 바탕으로 각각의 응력을 비교하여 다음과 같은 결과를 얻었다. 어떤 하중이 작용하더라도 더 많은 수의 임플란트를 이용하여 제작한 수복물이 골과 임플란트 자체에 작은 응력이 발생하였으며, 3개 구치 상실의 경우에 2개의 임플란트로 지지할때는 양단지지 수복물이 유리한 결과를 나타내었고, 중심와 수직하중이 아니고 협측경사 하중일 때는 협측으로 offset 한 것이 가장 좋은 결과를 나타내었다.