• 제목/요약/키워드: mesh convergence

검색결과 277건 처리시간 0.026초

Effect of Mesh Size on the Viscous Flow Parameters of an Axisymmetric Nozzle

  • Haoui, Rabah
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권2호
    • /
    • pp.149-155
    • /
    • 2011
  • The viscous flow in an axisymmetric nozzle was analyzed while accounting for the mesh sizes in both in the free stream and the boundary layer. The Navier-Stokes equations were resolved using the finite volume method in order to determine the supersonic flow parameters at the exit of the converging-diverging nozzle. The numerical technique in the aforementioned method uses the flux vector splitting of Van Leer. An adequate time stepping parameter, along with the Courant, Friedrich, Lewis coefficient and mesh size level, was selected to ensure numerical convergence. The boundary layer thickness significantly affected the viscous flow parameters at the exit of the nozzle. The best solution was obtained using a very fine grid, especially near the wall at which a strong variation of velocity, temperature and shear stress was observed. This study confirmed that the boundary layer thickness can be obtained only if the size of the mesh is lower than a certain value. The nozzles are used at the exit of the shock tube in order to obtain supersonic flows for various tests. They also used in propulsion to obtain the thrust necessary to the displacement of the vehicles.

A semi-analytical mesh-free method for 3D free vibration analysis of bi-directional FGP circular structures subjected to temperature variation

  • Shamshirsaz, Mahnaz;Sharafi, Shahin;Rahmatian, Javad;Rahmatian, Sajad;Sepehry, Naserodin
    • Structural Engineering and Mechanics
    • /
    • 제73권4호
    • /
    • pp.407-426
    • /
    • 2020
  • In this present paper, a semi-analytical mesh-free method is employed for the three-dimensional free vibration analysis of a bi-directional functionally graded piezoelectric circular structure. The dependent variables have been expanded by Fourier series with respect to the circumferential direction and have been discretized through radial and axial directions based on the mesh-free shape function. The current approach has a distinct advantage. The nonlinear Green-Lagrange strain is employed as the relationship between strain and displacement fields to observe thermal impacts in stiffness matrices. Nevertheless, high order terms have been neglected at the final steps of equations driving. The material properties are assumed to vary continuously in both radial and axial directions simultaneously in accordance with a power law distribution. The convergence and validation studies are conducted by comparing our proposed solution with available published results to investigate the accuracy and efficiency of our approach. After the validation study, a parametric study is undertaken to investigate the temperature effects, different types of polarization, mechanical and electric boundary conditions and geometry parameters of structures on the natural frequencies of functionally graded piezoelectric circular structures.

Implementation of functional expansion tally method and order selection strategy in Monte Carlo code RMC

  • Wang, Zhenyu;Liu, Shichang;She, Ding;Su, Yang;Chen, Yixue
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.430-438
    • /
    • 2021
  • The spatial distribution of neutron flux or reaction rate was calculated by cell or mesh tally in traditional Monte Carlo simulation. However, either cell or mesh tally leads to the increase of memory consumption and simulation time. In this paper, the function expansion tally (FET) method was developed in Reactor Monte Carlo code RMC to solve this problem. The FET method was applied to the tallies of neutron flux distributions of uranium block and PWR fuel rod models. Legendre polynomials were used in the axial direction, while Zernike polynomials were used in the radial direction. The results of flux, calculation time and memory consumption of different expansion orders were investigated, and compared with the mesh tally. Results showed that the continuous distribution of flux can be obtained by FET method. The flux distributions were consistent with that of mesh tally, while the memory consumption and simulation time can be effectively reduced. Finally, the convergence analysis of coefficients of polynomials were performed, and the selection strategy of FET order was proposed based on the statistics uncertainty of the coefficients. The proposed method can help to determine the order of FET, which was meaningful for the efficiency and accuracy of FET method.

쾌속조형기법을 이용한 생분해성 스텐트용 메쉬필름의 약물방출거동 효과 (Effect of Drug Eluting Uniformity for Biodegradable Stent by Solid Freeform Fabrication)

  • 정신영;김양은;고영주;신왕수;이준희;김완두;유영은;박수아
    • 폴리머
    • /
    • 제38권1호
    • /
    • pp.93-97
    • /
    • 2014
  • 약물방출 고분자 코팅 스텐트는 수술후 재협착을 획기적으로 줄였지만, 약물방출이 균일한 구조체를 제작하는 것이 어렵고 체내에 구조체를 영구적으로 남겨야 하는 부담을 여전히 가지고 있다. 이를 해결하는 방안으로 생분해성 고분자로 스텐트를 제작하는 방법들이 활발하게 연구되고 있다. 본 연구에서는 조형가공기술(solid freeform fabrication, SFF)의 하나인 쾌속조형기법(rapid prototyping technique)의 3차원 플로팅(3D plotting) 기술을 이용하여 파크리탁셀(PTX) 약물을 함유한 폴리카프로락톤(PCL) 3차원 구조체를 제작하였고, 생분해성 PCL 고분자로부터 PTX의 방출거동과 스텐트 제작 가능성을 고찰하였다. 약물을 포함한 구조체의 표면특성을 SEM으로 확인한 결과 굴곡이 자연스럽고 매끄러운 표면을 가지고 있었다. FTIR을 통해서 약물이 성공적으로 구조체에 포함되었음을 확인하였고, NMR과 HPLC를 통해서 PCL 구조체 중의 PCL함량과 PTX의 서서히 방출됨을 확인되었다. 또한 세포실험을 통해 구조체에서 방출된 약물이 생물학적으로 활성을 유지하고 있으며, 반복제작된 구조체에서도 균일한 활성의 약물이 방출됨을 확인하였다. 이와같은 쾌속조형기법을 이용하여 약물을 포함하는 구조체를 제작하고 분석함으로써, 생분해성 고분자 스텐트로서의 적용가능성을 제시하였다.

LOCAL CONVERGENCE OF THE SECANT METHOD UPPER $H{\ddot{O}}LDER$ CONTINUOUS DIVIDED DIFFERENCES

  • Argyros, Ioannis K.
    • East Asian mathematical journal
    • /
    • 제24권1호
    • /
    • pp.21-25
    • /
    • 2008
  • The semilocal convergence of the secant method under $H{\ddot{o}}lder$ continuous divided differences in a Banach space setting for solving nonlinear equations has been examined by us in [3]. The local convergence was recently examined in [4]. Motivated by optimization considerations and using the same hypotheses but more precise estimates than in [4] we provide a local convergence analysis with the following advantages: larger radius of convergence and finer error estimates on the distances involved. The results can be used for projection methods, to develop the cheapest possible mesh refinement strategies and to solve equations involving autonomous differential equations [1], [4], [7], [8].

  • PDF

WEAK SUFFICIENT CONVERGENCE CONDITIONS AND APPLICATIONS FOR NEWTON METHODS

  • Argyros, Ioannis-K.
    • Journal of applied mathematics & informatics
    • /
    • 제16권1_2호
    • /
    • pp.1-17
    • /
    • 2004
  • The famous Newton-Kantorovich hypothesis has been used for a long time as a sufficient condition for the convergence of Newton method to a solution of an equation in connection with the Lipschitz continuity of the Frechet-derivative of the operator involved. Using Lipschitz and center-Lipschitz conditions we show that the Newton-Kantorovich hypothesis is weakened. The error bounds obtained under our semilocal convergence result are finer and the information on the location of the solution more precise than the corresponding ones given by the dominating Newton-Kantorovich theorem, and under the same hypotheses/computational cost, since the evaluation of the Lipschitz also requires the evaluation of the center-Lipschitz constant. In the case of local convergence we obtain a larger convergence radius than before. This observation is important in computational mathematics and can be used in connection to projection methods and in the construction of optimum mesh independence refinement strategies.

Bio-inspired 알고리즘을 이용한 OFDMA 기반 메쉬 네트워크의 분산 주파수 동기화 기법 (A Distributed Frequency Synchronization Technique for OFDMA-Based Mesh Networks Using Bio-Inspired Algorithm)

  • 유현종;이미나;조용수
    • 한국통신학회논문지
    • /
    • 제37B권11호
    • /
    • pp.1022-1032
    • /
    • 2012
  • 본 논문에서는 OFDMA 기반의 무선 메쉬 네트워크에서 다수의 노드 간 발생하게 되는 주파수 비동기 문제를 해결하기 위해 생체모방 알고리즘(bio-inspired algorithm)을 이용하여 인접 노드 간 지역적인 주파수 동기화를 통해 메쉬 네트워크 전체를 하나의 주파수로 수렴시켜 나가는 분산 주파수 동기화 방식을 제안한다. 메쉬 네트워크의 주파수 수렴 특성은 네트워크의 규모와 구성 노드들의 배치에 따라 서로 다르기 때문에 특정 토폴로지의 경우 주파수 수렴을 위해 많은 시간이 소요될 수 있다. 제안하는 기법은 가중치 적용을 통하여 메쉬 토폴로지 형태에 크게 의존하지 않는 빠른 주파수 동기화를 이룰 수 있음을 확인한다.

Development of a Criterion for Efficient Numerical Calculation of Structural Vibration Responses

  • Kim, Woonkyung M.;Kim, Jeung-Tae;Kim, Jung-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제17권8호
    • /
    • pp.1148-1155
    • /
    • 2003
  • The finite element method is one of the methods widely applied for predicting vibration in mechanical structures. In this paper, the effect of the mesh size of the finite element model on the accuracy of the numerical solutions of the structural vibration problems is investigated with particular focus on obtaining the optimal mesh size with respect to the solution accuracy and computational cost. The vibration response parameters of the natural frequency, modal density, and driving point mobility are discussed. For accurate driving point mobility calculation, the decay method is employed to experimentally determine the internal damping. A uniform plate simply supported at four corners is examined in detail, in which the response parameters are calculated by constructing finite element models with different mesh sizes. The accuracy of the finite element solutions of these parameters is evaluated by comparing with the analytical results as well as estimations based on the statistical energy analysis, or if not available, by testing the numerical convergence. As the mesh size becomes smaller than one quarter of the wavelength of the highest frequency of interest, the solution accuracy improvement is found to be negligible, while the computational cost rapidly increases. For mechanical structures, the finite element analysis with the mesh size of the order of quarter wavelength, combined with the use of the decay method for obtaining internal damping, is found to provide satisfactory predictions for vibration responses.

Improvements of the CMFD acceleration capability of OpenMOC

  • Wu, Wenbin;Giudicelli, Guillaume;Smith, Kord;Forget, Benoit;Yao, Dong;Yu, Yingrui;Luo, Qi
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2162-2172
    • /
    • 2020
  • Due to its computational efficiency and geometrical flexibility, the Method of Characteristics (MOC) has been widely used for light water reactor lattice physics analysis. Usually acceleration methods are necessary for MOC to achieve acceptable convergence on practical reactor physics problems. Among them, Coarse Mesh Finite Difference (CMFD) is very popular and can drastically reduce the number of transport iterations. In OpenMOC, CMFD acceleration was implemented but had the limitation of supporting only a uniform CMFD mesh, which would often lead to splitting MOC source regions, thus creating an unnecessary increase in computation and memory use. In this study, CMFD acceleration with a non-uniform Cartesian mesh is implemented into OpenMOC. We also propose a quadratic fit based CMFD prolongation method in the axial direction to further improve the acceleration when multiple MOC source regions are contained in one CMFD coarse mesh. Numerical results are presented to demonstrate the improvement of the CMFD acceleration capability in OpenMOC in terms of both efficiency and stability.

MediaPipe Face Mesh를 이용한 얼굴 제스처 기반의 사용자 인터페이스의 성능 개선 (Performance Improvement of Facial Gesture-based User Interface Using MediaPipe Face Mesh)

  • 목진왕;곽노윤
    • 사물인터넷융복합논문지
    • /
    • 제9권6호
    • /
    • pp.125-134
    • /
    • 2023
  • 본 논문은 MediaPipe Face Mesh 모델을 이용해 일련의 프레임 시퀀스에서 얼굴 제스처를 인식해 해당 사용자 이벤트를 처리하는 얼굴 제스처 기반의 사용자 인터페이스 선행 연구의 성능 개선 방안을 제안함에 그 목적이 있다. 선행 연구는 MediaPipe Face Mesh 모델에서 선택한 7개의 랜드마크의 3차원 좌표들로부터 얼굴 제스처를 인식해 해당 사용자 이벤트를 발생시키고 이에 대응하는 명령을 수행하는 것이 특징이다. 제안된 방법은 그 과정에서 커서 위치들에 적응형 이동 평균 처리를 적용해 미세 떨림을 완화함으로써 커서 안정화를 도모하고, 양안 동시 개폐 시에 양안의 일시적 개폐 불일치를 차단해 그 성능을 개선하였다. 제안된 얼굴 제스처 인터페이스의 사용성 평가 결과, 얼굴 제스처의 평균 인식률이 선행 연구에서 95.8%였던 것에 비해 98.7%로 상향되는 것이 확인되었다.