• Title/Summary/Keyword: mesenchymal stem cell (MSC)

Search Result 128, Processing Time 0.025 seconds

Immunomodulatory Effect of Mesenchymal Stem Cell-Derived Exosomes in Lipopolysaccharide-Stimulated RAW 264.7 Cells (Lipopolysaccharide로 자극한 RAW 264.7 세포에서 성체줄기세포 유래 엑소좀(exosome)의 면역 조절 효과)

  • Jung, Soo-Kyung;Park, Mi Jeong;Lee, Jienny;Byeon, Jeong Su;Gu, Na-Yeon;Cho, In-Soo;Cha, Sang-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.3
    • /
    • pp.383-390
    • /
    • 2016
  • Mesenchymal stem cells (MSCs) are multipotent stem cells that can be differentiated into a variety of cell types, including adipocytes, osteoblasts, chondrocytes, β-pancreatic islet cells, and neuronal cells. MSCs have been reported to exhibit immunomodulatory effects in many diseases. Many studies have reported that MSCs have distinct roles in modulating inflammatory and immune responses by releasing bioactive molecules. Exosomes are cell-derived vesicles present in biological fluids, including the blood, urine, and cultured medium of cell cultures. In this study, we investigated the immunomodulatory effects of mouse adipose tissue-derived MSCs (mAD-MSCs), cultured medium (MSC-CM) of mAD-MSCs, and mAD-MSC-derived exosomes (MSC-Exo) on lipopolysaccharide (LPS)-induced RAW 264.7 cells. We observed that the expression levels of IL-1β, TNF-α, and IL-10 were significantly increased in LPS-stimulated RAW 264.7 cells compared to those in LPS-unstimulated RAW 264.7 cells. Additionally, these values were significantly (p < 0.05) decreased in mAD-MSCs-RAW 264.7 cell co-culture groups, MSC-CM-treated groups, and MSC-Exo-treated groups. MSCs can modulate the immune system in part by secreting cytokines and growth factors. We observed that immunomodulatory factors such as IL-1β, TNF-α, and IL-10 were secreted by mAD-MSCs under co-culturing conditions of mAD-MSCs with activated RAW 264.7 cells. In addition, mAD-MSC-derived exosomes exhibited similar immunomodulatory effects in activated RAW 264.7 cells. Therefore, our results suggest that mAD-MSCs have an immunomodulatory function through indirect contact.

Combination Therapy for Gliomas Using Temozolomide and Interferon-Beta Secreting Human Bone Marrow Derived Mesenchymal Stem Cells

  • Park, Jae-Hyun;Ryu, Chung Heon;Kim, Mi Jin;Jeun, Sin-Soo
    • Journal of Korean Neurosurgical Society
    • /
    • v.57 no.5
    • /
    • pp.323-328
    • /
    • 2015
  • Objective : Malignant gliomas are the most common primary tumors of the central nervous system and the prognosis of patients with gliomas is poor. The combination of interferon-bata (IFN-${\beta}$) and temozolomide (TMZ) has shown significant additive antitumor effects in human glioma xenograft models. Considering that the poor survival of patients with human malignant gliomas relates partly to the inability to deliver therapeutic agents to the tumor, the tropism of human bone marrow-derived mesenchymal stem cells (MSC) for malignant gliomas can be exploited to therapeutic advantages. We investigated the combination effects of TMZ and MSCs that secrete IFN-${\beta}$ on gliomas. Methods : We engineered human MSCs to secret mouse IFN-${\beta}$ (MSC-IFN-${\beta}$) via adenoviral transduction and confirmed their secretory capacity using enzyme-linked immunosorbent assays. In vitro and in vivo experiments were performed to determine the effects of the combined TMZ and MSC-IFN-${\beta}$ treatment. Results : In vitro, the combination of MSC-IFN-${\beta}$ and TMZ showed significantly enhanced antitumor effects in GL26 mouse glioma cells. In vivo, the combined MSC-IFN-${\beta}$ and TMZ therapy significantly reduced the tumor size and improved the survival rates compared to each treatment alone. Conclusion : These results suggest that MSCs can be used as an effective delivery vehicle so that the combination of MSC-IFN-${\beta}$ and TMZ could be considered as a new option for the treatment of malignant gliomas.

Recent Progress on Skin-Derived Mesenchymal Stem Cells in Pigs

  • Kumar, B. Mohana;Patil, Rajreddy;Lee, Sung-Lim;Rho, Gyu-Jin
    • Reproductive and Developmental Biology
    • /
    • v.36 no.4
    • /
    • pp.283-290
    • /
    • 2012
  • Skin serves as an easily accessible source of multipotent stem cells with potential for cellular therapies. In pigs, stem cells from skin tissues of fetal and adult origins have been demonstrated as either floating spheres (cell aggregates) or adherent spindle-shaped mesenchymal stem cell (MSC)-like cells depending on culture conditions. The cells isolated from the epidermis and dermis of porcine skin showed plastic adherent growth in the presence of serum and positively expressed a range of surface and intracellular markers that are considered to be specific for MSCs. The properties of primitive stem cells have been observed with the expression of alkaline phosphatase and markers related to pluripotency. Further, studies have shown the ability of skin-derived MSCs to differentiate in vitro along mesodermal, neuronal and germ-line lineages. Moreover, preclinical studies have also been performed to assess their in vivo potential, and the findings appear to be effective in tissue regeneration at the defected site after transplantation. The present review describes the recent progress on the biological features of porcine skin-derived MSCs as adherent cells, and summarizes their potential in advancing stem cell based therapies.

Optimal Ratio of Wnt3a Expression in Human Mesenchymal Stem Cells Promotes Axonal Regeneration in Spinal Cord Injured Rat Model

  • Yoon, Hyung Ho;Lee, Hyang Ju;Min, Joongkee;Kim, Jeong Hoon;Park, Jin Hoon;Kim, Ji Hyun;Kim, Seong Who;Lee, Heuiran;Jeon, Sang Ryong
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.5
    • /
    • pp.705-715
    • /
    • 2021
  • Objective : Through our previous clinical trials, the demonstrated therapeutic effects of MSC in chronic spinal cord injury (SCI) were found to be not sufficient. Therefore, the need to develop stem cell agent with enhanced efficacy is increased. We transplanted enhanced Wnt3-asecreting human mesenchymal stem cells (hMSC) into injured spines at 6 weeks after SCI to improve axonal regeneration in a rat model of chronic SCI. We hypothesized that enhanced Wnt3a protein expression could augment neuro-regeneration after SCI. Methods : Thirty-six Sprague-Dawley rats were injured using an Infinite Horizon (IH) impactor at the T9-10 vertebrae and separated into five groups : 1) phosphate-buffered saline injection (injury only group, n=7); 2) hMSC transplantation (MSC, n=7); 3) hMSC transfected with pLenti vector (without Wnt3a gene) transplantation (pLenti-MSC, n=7); 4) hMSC transfected with Wnt3a gene transplantation (Wnt3a-MSC, n=7); and 5) hMSC transfected with enhanced Wnt3a gene (1.7 fold Wnt3a mRNA expression) transplantation (1.7 Wnt3a-MSC, n=8). Six weeks after SCI, each 5×105 cells/15 µL at 2 points were injected using stereotactic and microsyringe pump. To evaluate functional recovery from SCI, rats underwent Basso-Beattie-Bresnahan (BBB) locomotor test on the first, second, and third days post-injury and then weekly for 14 weeks. Axonal regeneration was assessed using growth-associated protein 43 (GAP43), microtubule-associated protein 2 (MAP2), and neurofilament (NF) immunostaining. Results : Fourteen weeks after injury (8 weeks after transplantation), BBB score of the 1.7 Wnt3a-MSC group (15.0±0.28) was significantly higher than that of the injury only (10.0±0.48), MSC (12.57±0.48), pLenti-MSC (12.42±0.48), and Wnt3a-MSC (13.71±0.61) groups (p<0.05). Immunostaining revealed increased expression of axonal regeneration markers GAP43, MAP2, and NF in the Wnt3a-MSC and 1.7 Wnt3a-MSC groups. Conclusion : Our results showed that enhanced gene expression of Wnt3a in hMSC can potentiate axonal regeneration and improve functional recovery in a rat model of chronic SCI.

New therapeutic approach with extracellular vesicles from stem cells for interstitial cystitis/bladder pain syndrome

  • Dayem, Ahmed Abdal;Song, Kwonwoo;Lee, Soobin;Kim, Aram;Cho, Ssang-Goo
    • BMB Reports
    • /
    • v.55 no.5
    • /
    • pp.205-212
    • /
    • 2022
  • Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating chronic disorder characterized by suprapubic pain and urinary symptoms such as urgency, nocturia, and frequency. The prevalence of IC/BPS is increasing as diagnostic criteria become more comprehensive. Conventional pharmacotherapy against IC/BPS has shown suboptimal effects, and consequently, patients with end-stage IC/BPS are subjected to surgery. The novel treatment strategies should have two main functions, anti-inflammatory action and the regeneration of glycosaminoglycan and urothelium layers. Stem cell therapy has been shown to have dual functions. Mesenchymal stem cells (MSCs) are a promising therapeutic option for IC/BPS, but they come with several shortcomings, such as immune activation and tumorigenicity. MSC-derived extracellular vesicles (MSC-EVs) hold numerous therapeutic cargos and are thus a viable cell-free therapeutic option. In this review, we provide a brief overview of IC/BPS pathophysiology and limitations of the MSC-based therapies. Then we provide a detailed explanation and discussion of therapeutic applications of EVs in IC/BPS as well as the possible mechanisms. We believe our review will give an insight into the strengths and drawbacks of EV-mediated IC/BPS therapy and will provide a basis for further development.

$PKC{\eta}$ Regulates the $TGF{\beta}3$-induced Chondrogenic Differentiation of Human Mesenchymal Stem Cell

  • Ku, Bo Mi;Yune, Young Phil;Lee, Eun Shin;Hah, Young-Sool;Park, Jae Yong;Jeong, Joo Yeon;Lee, Dong Hoon;Cho, Gyeong Jae;Choi, Wan Sung;Kang, Sang Soo
    • Development and Reproduction
    • /
    • v.17 no.4
    • /
    • pp.299-309
    • /
    • 2013
  • Transforming growth factor (TGF) family is well known to induce the chondrogenic differentiation of mesenchymal stem cells (MSC). However, the precise signal transduction pathways and underlying factors are not well known. Thus the present study aims to evaluate the possible role of C2 domain in the chondrogenic differentiation of human mesenchymal stem cells. To this end, 145 C2 domains in the adenovirus were individually transfected to hMSC, and morphological changes were examined. Among 145 C2 domains, C2 domain of protein kinase C eta ($PKC{\eta}$) was selected as a possible chondrogenic differentiation factor for hMSC. To confirm this possibility, we treated $TGF{\beta}3$, a well known chondrogenic differentiation factor of hMSC, and examined the increased-expression of glycosaminoglycan (GAG), collagen type II (COL II) as well as $PKC{\eta}$ using PT-PCR, immunocytochemistry and Western blot analysis. To further evaluation of C2 domain of $PKC{\eta}$, we examined morphological changes, expressions of GAG and COL II after transfection of $PKC{\eta}$-C2 domain in hMSC. Overexpression of $PKC{\eta}$-C2 domain induced morphological change and increased GAG and COL II expressions. The present results demonstrate that $PKC{\eta}$ involves in the TGF-${\beta}3$-induced chondrogenic differentiation of hMSC, and C2 domain of $PKC{\eta}$ has important role in this process.

Expression of HLA and Mixed Lymphocyte Reaction of Mesenchymal Stem Cells Derived from Human Umbilical Cord Blood (제대혈 유래 중간엽줄기세포에서 HLA의 발현과 Mixed Lymphocyte Reaction)

  • Lee, Hyo-Jong;kang, Sun-Young;Park, Se-Jin;Lee, Seung-Yong;Lee, Hee-Chun;Koh, Phil-Ok;Park, Ji-Kwon;Paik, Won-Young;Yeon, Seong-Chan
    • Journal of Veterinary Clinics
    • /
    • v.28 no.4
    • /
    • pp.399-402
    • /
    • 2011
  • In recent years, the mesenchymal stem cells (MSC) derived from various tissues have been widely tested for developing cell therapies, tissue repair and transplantation. Although there has been much interest in the immunomodulatory properties of MSC and their immunologic reactions following autologous, allogeneic and xenogenic transplantation of MSC in vivo, up to date, the expression of immunogenic markers, such as class I and II human leukocyte antigens (HLA), after differentiation of human umbilical cord blood (hUCB)-derived MSC has been poorly investigated and require extensive in vitro and in vivo testing. In this experiment, the expression of the HLA-ABC and HLA-DR on hUCB-derived MSC have been tested by immunocytochemical staining. The undifferentiated MSC were moderately stained for HLA-ABC but very weakly for HLA-DR. In order to investigate the inhibitory effect of allogeneic lymphocytes on proliferation of MSC, the MSC were cultured in the presence or absence of peripheral allogeneic lymphocytes stimulated with concanavalin A. The allogeneic lymphocytes did not significantly inhibit MSC proliferation. We conclude that hUCB-MSC expressed moderately class I HLA antigen while almost negatively class II HLA antigen. The MSC have an immunomodulatory effect which can suppress the allogeneic response of lymphocytes. These in vitro data suggest that allogeneic MSC derived from cord blood can be useful candidate for allogeneic cell therapy and transplantation without a major risk of rejection.

Mesenchymal Stem Cell-derived Exosomes: Applications in Cell-free Therapy (중간엽줄기세포유래 엑소좀: 비세포치료제로서의 활용)

  • Heo, June Seok;Kim, Jinkwan
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.4
    • /
    • pp.391-398
    • /
    • 2018
  • Mesenchymal stem cells (MSCs) are an attractive resource for refractory patients because of their anti-inflammatory/immunomodulatory capability and multi-lineage differentiation potential. The transplantation of MSCs has led to positive results in preclinical and clinical application to various diseases, including autoimmune disease, cardiovascular disease, cancer, liver cirrhosis, and ischemic stroke. On the other hand, studies have shown that paracrine factors, not direct cell replacement for damaged cells or tissue, are the main contributors in MSC-based therapy. More recently, evidence has indicated that MSC-derived exosomes play crucial roles in regulating the paracrine factors that can mediate tissue regeneration via transferring nucleic acids, proteins, and lipids to the local microenvironment and cell-to-cell communication. The use of these exosomes is likely to be beneficial for the therapeutic application of MSCs because their use can avoid harmful effects, such as tumor formation involved in cell transplantation. Therefore, therapeutic applications using MSC-derived exosomes might be safe and efficient strategies for regenerative medicine and tissue engineering. This review summarizes the recent advances and provides a comprehensive understanding of the role of MSC-derived exosomes as a therapeutic agent.

Mesenchymal stem cells transplantation for neuroprotection in preterm infants with severe intraventricular hemorrhage

  • Ahn, So Yoon;Chang, Yun Sil;Park, Won Soon
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.6
    • /
    • pp.251-256
    • /
    • 2014
  • Severe intraventricular hemorrhaging (IVH) in premature infants and subsequent posthemorrhagic hydrocephalus (PHH) causes significant mortality and life-long neurological complications, including seizures, cerebral palsy, and developmental retardation. However, there are currently no effective therapies for neonatal IVH. The pathogenesis of PHH has been mainly explained by inflammation within the subarachnoid spaces due to the hemolysis of extravasated blood after IVH. Obliterative arachnoiditis, induced by inflammatory responses, impairs cerebrospinal fluid (CSF) resorption and subsequently leads to the development of PHH with ensuing brain damage. Increasing evidence has demonstrated potent immunomodulating abilities of mesenchymal stem cells (MSCs) in various brain injury models. Recent reports of MSC transplantation in an IVH model of newborn rats demonstrated that intraventricular transplantation of MSCs downregulated the inflammatory cytokines in CSF and attenuated progressive PHH. In addition, MSC transplantation mitigated the brain damages that ensue after IVH and PHH, including reactive gliosis, cell death, delayed myelination, and impaired behavioral functions. These findings suggest that MSCs are promising therapeutic agents for neuroprotection in preterm infants with severe IVH.

Effects of Human Mesenchymal Stem Cell Transplantation Combined with Polymer on Functional Recovery Following Spinal Cord Hemisection in Rats

  • Choi, Ji Soo;Leem, Joong Woo;Lee, Kyung Hee;Kim, Sung-Soo;SuhKim, Haeyoung;Jung, Se Jung;Kim, Un Jeng;Lee, Bae Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.405-411
    • /
    • 2012
  • The spontaneous axon regeneration of damaged neurons is limited after spinal cord injury (SCI). Recently, mesenchymal stem cell (MSC) transplantation was proposed as a potential approach for enhancing nerve regeneration that avoids the ethical issues associated with embryonic stem cell transplantation. As SCI is a complex pathological entity, the treatment of SCI requires a multipronged approach. The purpose of the present study was to investigate the functional recovery and therapeutic potential of human MSCs (hMSCs) and polymer in a spinal cord hemisection injury model. Rats were subjected to hemisection injuries and then divided into three groups. Two groups of rats underwent partial thoracic hemisection injury followed by implantation of either polymer only or polymer with hMSCs. Another hemisection-only group was used as a control. Behavioral, electrophysiological and immunohistochemical studies were performed on all rats. The functional recovery was significantly improved in the polymer with hMSC-transplanted group as compared with control at five weeks after transplantation. The results of electrophysiologic study demonstrated that the latency of somatosensory-evoked potentials (SSEPs) in the polymer with hMSC-transplanted group was significantly shorter than in the hemisection-only control group. In the results of immunohistochemical study, ${\beta}$-gal-positive cells were observed in the injured and adjacent sites after hMSC transplantation. Surviving hMSCs differentiated into various cell types such as neurons, astrocytes and oligodendrocytes. These data suggest that hMSC transplantation with polymer may play an important role in functional recovery and axonal regeneration after SCI, and may be a potential therapeutic strategy for SCI.