• Title/Summary/Keyword: mesenchymal stem cell (MSC)

Search Result 128, Processing Time 0.03 seconds

The Expression of Immunomodulation-Related Cytokines and Genes of Adipose- and Bone Marrow-Derived Human Mesenchymal Stromal Cells from Early to Late Passages

  • Mun, Chin Hee;Kang, Mi-Il;Shin, Yong Dae;Kim, Yeseul;Park, Yong-Beom
    • Tissue Engineering and Regenerative Medicine
    • /
    • v.15 no.6
    • /
    • pp.771-779
    • /
    • 2018
  • BACKGROUND: Mesenchymal stromal cells (MSCs) are multipotent stem cells that can differentiate into several cell types. In addition, many studies have shown that MSCs modulate the immune response. However, little information is currently available regarding the maintenance of immunomodulatory characteristics of MSCs through passages. Therefore, we investigated and compared cytokine and gene expression levels from adipose (AD) and bone marrow (BM)-derived MSCs relevant to immune modulation from early to late passages. METHODS: MSC immunophenotype, growth characteristics, cytokine expressions, and gene expressions were analyzed. RESULTS: AD-MSCs and BM-MSCs had similar cell morphologies and surface marker expressions from passage 4 to passage 10. Cytokines secreted by AD-MSCs and BM-MSCs were similar from early to late passages. AD-MSCs and BM-MSCs showed similar immunomodulatory properties in terms of cytokine secretion levels. However, the gene expressions of tumor necrosis factor-stimulated gene (TSG)-6 and human leukocyte antigen (HLA)-G were decreased and gene expressions of galectin-1 and -3 were increased in both AD- and BM-MSCs with repeated passages. CONCLUSION: Our study showed that the immunophenotype and expression of immunomodulation-related cytokines of AD-MSCs and BM-MSCs immunomodulation through the passages were not significantly different, even though the gene expressions of both MSCs were different.

Anti-cancer Effect of Hot Water Extract from Mycelium in Germanium-enriched Cordyceps militaris (게르마늄 농도를 증가 시킨 동충하초 균사체 열수 추출액의 항암효과)

  • Choi, Jeong Su;Heo, Ji Hye;Kim, Dae Jin;Namkung, Su Min;Lee, Tae Bok;Lee, Min Woo;Kim, Suhng Wook
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.2
    • /
    • pp.69-78
    • /
    • 2017
  • Cordyceps militaris has been used in traditional Chinese medicine owing to its anticancer and immunomodulatory activities. Germanium compounds have also been shown to be associated with many pharmacological functions, such as antimicrobial, antiviral, antitumor, antimutagenic, and immunomodulating effects. In this study, we examined the biological properties of hot water extract from mycelial liquid culture of germanium-enriched C. militaris (CMGe). CMGe displayed a concentration-dependent antiproliferation activity against four human cancer cell lines. The antiproliferative activity of CMGe was 2-4-fold lower than that of hot water extract from mycelial liquid culture in C. militaris (CM). However, CM had a concentration-dependent cytotoxicity to human bone marrow-derived mesenchymal stem cells (MSCs). Contrastingly, CMGe did not cause any cellular damage to MSCs. MSCs cultured with CMGe displayed an increased proliferative activity with no cytotoxic effect. The oral administration of CMGe inhibited increased tumor volume and weight compared with the control group. CMGe has the potential to be used as an industrial product in medicinal foods as well as in pharmaceutical products.

Osteoblast differentiation of human bone marrow stromal cells (hBMSC) according to age for bone tissue engineering (조직공학 재생골을 위한 연구에서 사람 골수 기원 간엽줄기세포의 나이에 따른 조골세포 분화능에 관한 연구)

  • Song, Gin-Ah;Ryoo, Hyun-Mo;Choi, Jin-Young
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.4
    • /
    • pp.243-249
    • /
    • 2010
  • Tissue engineered bone (TEB) can replace an autogenous bone graft requiring an secondary operation site as well as avoid complications like inflammation or infection from xenogenic or synthetic bone graft. Adult mesenchymal stem cells (MSC) for TEB are considered to have various ranges of differentiation capacity or multipotency by the donor site and age. This study examined the effect of age on proliferation capacity, differentiation capacity and bone morphogenetic protein-2 (BMP-2) responsiveness of human bone marrow stromal cells (hBMSC) according to the age. In addition, to evaluate the effect on enhancement for osteoblast differentiation, the hBMSC were treated with Trichostatin A (TSA) and 5-Azacitidine (5-AZC) which was HDAC inhibitors and methyltransferase inhibitors respectively affecting chromatin remodeling temporarily and reversibly. The young and old group of hBMSC obtained from the iliac crest from total 9 healthy patients, showed similar proliferation capacity. Cell surface markers such as CD34, CD45, CD90 and CD105 showed uniform expression regardless of age. However, the young group showed more prominent transdifferentiation capacity with adipogenic differentiation. The osteoblast differentiation capacity or BMP responsiveness was low and similar between young and old group. TSA and 5-AZC showed potential for enhancing the BMP effect on osteoblast differentiation by increasing the expression level of osteogenic master gene, such as DLX5, ALP. More study will be needed to determine the positive effect of the reversible function of HDAC inhibitors or methyltransferase inhibitors on enhancing the low osteoblast differentiation capacity of hBMSC.

Real-time FRET imaging of cytosolic FAK signal on microwavy patterned-extracellular matrix (ECM) (미세파상 패턴 ECM 에서 세포질 FAK 신호의 실시간 FRET 이미징)

  • Suh, Jung-Soo;Jang, Yoon-Kwan;Kim, Tae-Jin
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Human mesenchymal stem cells (hMSC) are multipotent stromal cells that have great potential to differentiate into a variety of cell types such as osteocytes, chondrocytes, and myocytes. Although there have been many studies on their clinical availability, little is known about how intracellular signals can be modulated by topographic features of the extracellular matrix (ECM). In this study, we investigated whether and how microwavy-patterned extracellular matrix (ECM) could affect the signaling activity of focal adhesion kinase (FAK), a key cellular adhesion protein. The fluorescence resonance energy transfer (FRET)-based FAK biosensor-transfected cells are incubated on microwavy-patterned surfaces and then platelet derived growth factor (PDGF) are treated to trigger FAK signals, followed by monitoring through live-cell FRET imaging in real time. As a result, we report that PDGF-induced FAK was highly activated in cells cultured on microwavy-patterned surface with L or M type, while inhibited by H type-patterned surface. In further studies, PDGF-induced FAK signals are regulated by functional support of actin filaments, microtubules, myosin-related proteins, suggesting that PDGF-induced FAK signals in hMSC upon microwavy surfaces are dependent on cytoskeleton (CSK)-actomyosin networks. Thus, our findings not only provide new insight on molecular mechanisms on how FAK signals can be regulated by distinct topographical cues of the ECM, but also may offer advantages in potential applications for regenerative medicine and tissue engineering.

Induction of Effective Osteogenesis by Mesenchymal Stem Cells from the Human Subchondral Bone (사람 연골하골 중간엽 줄기세포의 효율적인 골형성 유도)

  • Huh, Jeong-Eun;Cho, Yoon-Je;Yoo, Myung-Chul;Baek, Yong-Hyeon;Lee, Jae-Dong;Choi, Do-Young;Park, Dong-Suk
    • Journal of Acupuncture Research
    • /
    • v.23 no.5
    • /
    • pp.69-77
    • /
    • 2006
  • Background : Mesenchymal stem cells (MSCs) are present in most of the tissue matrix, taking part in their regeneration when injury or damage occurs. The aim of this study was to investigate the presence of cells with pluripotential characteristics in human subchondral bone and the capacity of these cells to differentiate to osteoblast. Methods : Human subchondral bone were digested with collagenase. Isolated cells were cultured with a-MEM, 15% FBS, 10-8M dexamethasone and 50 ng/mL ascoric acid. Cells from 0 day(isolated cells), 7 day (first subculture) and 14 days (third subculture) were used to carry out phenotypic characterization experiments flowcytometry analysis with 11 monoclonal antibodies) and osteogenic differentiation experiments. Osteogenic differentiation of cells was assessment by quantification of bone extracellular matrix components by following analysis: alkaline phosphatase(ALP) stains to detect ALP activity, RT-PCR and western blot to detect osteocalcin (OCN), osteopontin (OPN) and type I collagen(Col I), and Alizarin red stains to detect calcium deposition. Results : Flowcytometry analyses showed that in our population more than 98% of cells were positive for MSC markers: SH-2(CD105, 99%), CD29 (95%), CD73 (95%). Cells were negative for hematopoietic markers (CD11b, CD34, and CD45). Furthermore, cells showed positive stain to multipotent markers such as CDl17 (c-kit) (15.1%), and CD166 (74.9%), and cell adhesion molecules such as CD54 (78.1%) and CD106 (63.5%). The osteogenic specific marker analyses showed that the culture of these cells for 7 and 14 days stimulates ALP, OCN, OPN and Col I synthesis by RT-PCR and Western blot analysis. Also, after 14 days in the culture of MSCs induces mineralization by Arizarin red stain. Conclusion : In this work, we demonstrated a new and efficient method for osteoblastic differentiation of human subchondral bone stem cells. As MSCs takes part in reparative processes of adult tissues, these cells could play an important role in osteogenesis.

  • PDF

Attenuation of Experimental Autoimmune Hepatitis in Mice with Bone Mesenchymal Stem Cell-Derived Exosomes Carrying MicroRNA-223-3p

  • Lu, Feng-Bin;Chen, Da-Zhi;Chen, Lu;Hu, En-De;Wu, Jin-Lu;Li, Hui;Gong, Yue-Wen;Lin, Zhuo;Wang, Xiao-Dong;Li, Ji;Jin, Xiao-Ya;Xu, Lan-Man;Chen, Yong-Ping
    • Molecules and Cells
    • /
    • v.42 no.12
    • /
    • pp.906-918
    • /
    • 2019
  • MicroRNA-223-3p (miR-223-3p) is one of the potential microRNAs that have been shown to alleviate inflammatory responses in pre-clinical investigations and is highly encased in exosomes derived from bone mesenchymal stem cells (MSC-exosomes). MSC-exosomes are able to function as carriers to deliver microRNAs into cells. Autoimmune hepatitis is one of the challenging liver diseases with no effective treatment other than steroid hormones. Here, we examined whether MSC-exosomes can transfer miR-223-3p to treat autoimmune hepatitis in an experimental model. We found that MSC-exosomes were successfully incorporated with miR-223-3p and delivered miR-223-3p into macrophages. Moreover, there was no toxic effect of exosomes on the macrophages. Furthermore, treatments of either exosomes or exosomes with miR-223-3p successfully attenuated inflammatory responses in the liver of autoimmune hepatitis and inflammatory cytokine release in both the liver and macrophages. The mechanism may be related to the regulation of miR-223-3p level and STAT3 expression in the liver and macrophages. These results suggest that MSC-exosomes can be used to deliver miR-223-3p for the treatment of autoimmune hepatitis.

Tumor necrosis factor-inducible gene 6 interacts with CD44, which is involved in fate-change of hepatic stellate cells

  • Wang, Sihyung;Kim, Jieun;Lee, Chanbin;Jung, Youngmi
    • BMB Reports
    • /
    • v.53 no.8
    • /
    • pp.425-430
    • /
    • 2020
  • Tumor necrosis factor-inducible gene 6 protein (TSG-6) is a cytokine secreted by mesenchymal stem cells (MSCs) and regulates MSC stemness. We previously reported that TSG-6 changes primary human hepatic stellate cells (pHSCs) into stem-like cells by activating yes-associated protein-1 (YAP-1). However, the molecular mechanism behind the reprogramming action of TSG-6 in pHSCs remains unknown. Cluster of differentiation 44 (CD44) is a transmembrane protein that has multiple functions depending on the ligand it is binding, and it is involved in various signaling pathways, including the Wnt/β-catenin pathway. Given that β-catenin influences stemness and acts downstream of CD44, we hypothesized that TSG-6 interacts with the CD44 receptor and stimulates β-catenin to activate YAP-1 during TSG-6-mediated transdifferentiation of HSCs. Immunoprecipitation assays showed the interaction of TSG-6 with CD44, and immunofluorescence staining analyses revealed the colocalization of TSG-6 and CD44 at the plasma membrane of TSG-6-treated pHSCs. In addition, TSG-6 treatment upregulated the inactive form of phosphorylated glycogen synthase kinase (GSK)-3β, which is a negative regulator of β-catenin, and promoted nuclear accumulation of active/nonphosphorylated β-catenin, eventually leading to the activation of YAP-1. However, CD44 suppression in pHSCs following CD44 siRNA treatment blocked the activation of β-catenin and YAP-1, which inhibited the transition of TSG-6-treated HSCs into stem-like cells. Therefore, these findings demonstrate that TSG-6 interacts with CD44 and activates β-catenin and YAP-1 during the conversion of TSG-6-treated pHSCs into stem-like cells, suggesting that this novel pathway is an effective therapeutic target for controlling liver disease.

Effect of FGF-2, TGF-β-1, and BMPs on Teno/Ligamentogenesis and Osteo/Cementogenesis of Human Periodontal Ligament Stem Cells

  • Hyun, Sun-Yi;Lee, Ji-Hye;Kang, Kyung-Jung;Jang, Young-Joo
    • Molecules and Cells
    • /
    • v.40 no.8
    • /
    • pp.550-557
    • /
    • 2017
  • The periodontal ligament (PDL) is the connective tissue between tooth root and alveolar bone containing mesenchymal stem cells (MSC). It has been suggested that human periodontal ligament stem cells (hPDLSCs) differentiate into osteo/cementoblast and ligament progenitor cells. The periodontitis is a representative oral disease where the PDL tissue is collapsed, and regeneration of this tissue is important in periodontitis therapy. Fibroblast growth factor-2 (FGF-2) stimulates proliferation and differentiation of fibroblastic MSCs into various cell lineages. We evaluated the dose efficacy of FGF-2 for cytodifferentiation of hPDLSCs into ligament progenitor. The fibrous morphology was highly stimulated even at low FGF-2 concentrations, and the expression of teno/ligamentogenic markers, scleraxis and tenomodulin in hPDLSCs increased in a dose dependent manner of FGF-2. In contrast, expression of the osteo/cementogenic markers decreased, suggesting that FGF-2 might induce and maintain the ligamentogenic potential of hPDLSCs. Although the stimulation of tenocytic maturation by $TGF-{\beta}1$ was diminished by FGF-2, the inhibition of the expression of early ligamentogenic marker by $TGF-{\beta}1$ was redeemed by FGF-2 treatment. The stimulating effect of BMPs on osteo/cementogenesis was apparently suppressed by FGF-2. These results indicate that FGF-2 predominantly differentiates the hPDLSCs into teno/ligamentogenesis, and has an antagonistic effect on the hard tissue differentiation induced by BMP-2 and BMP-4.

TATA box binding protein and ribosomal protein 4 are suitable reference genes for normalization during quantitative polymerase chain reaction study in bovine mesenchymal stem cells

  • Jang, Si-Jung;Jeon, Ryoung-Hoon;Kim, Hwan-Deuk;Hwang, Jong-Chan;Lee, Hyeon-Jeong;Bae, Seul-Gi;Lee, Sung-Lim;Rho, Gyu-Jin;Kim, Seung-Joon;Lee, Won-Jae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.12
    • /
    • pp.2021-2030
    • /
    • 2020
  • Objective: Quantitative polymerase chain reaction (qPCR) has been extensively used in the field of mesenchymal stem cell (MSC) research to elucidate their characteristics and clinical potential by normalization of target genes against reference genes (RGs), which are believed to be stably expressed irrespective of various experimental conditions. However, the expression of RGs is also variable depending on the experimental conditions, which may lead to false or contradictory conclusions upon normalization. Due to the current lack of information for a clear list of stable RGs in bovine MSCs, we conducted this study to identify suitable RGs in bovine MSCs. Methods: The cycle threshold values of ten traditionally used RGs (18S ribosomal RNA [18S], beta-2-microglobulin [B2M], H2A histone family, member Z [H2A], peptidylprolyl isomerase A [PPIA], ribosomal protein 4 [RPL4], succinate dehydrogenase complex, subunit A [SDHA], beta actin [ACTB], glyceraldehyde-3-phosphate dehydrogenase [GAPDH], TATA box binding protein [TBP], and hypoxanthine phosphoribosyltrasnfrase1 [HPRT1]) in bovine bone marrow-derived MSCs (bBMMSCs) were validated for their stabilities using three types of RG evaluation algorithms (geNorm, Normfinder, and Bestkeeper). The effect of validated RGs was then verified by normalization of lineage-specific genes (fatty acid binding protein 4 [FABP4] and osteonectin [ON]) expressions during differentiations of bBMMSCs or POU class 5 homeobox 1 (OCT4) expression between bBMMSCs and dermal skins. Results: Based on the results obtained for the three most stable RGs from geNorm (TBP, RPL4, and H2A), Normfinder (TBP, RPL4, and SDHA), and Bestkeeper (TBP, RPL4, and SDHA), it was comprehensively determined that TBP and RPL4 were the most stable RGs in bBMMSCs. However, traditional RGs were suggested to be the least stable (18S) or moderately stable (GAPDH and ACTB) in bBMMSCs. Normalization of FABP4 or ON against TBP, RPL4, and 18S presented significant differences during differentiation of bBMMSCs. However, although significantly low expression of OCT4 was detected in dermal skins compared to that in bBMMSCs when TBP and RPL4 were used in normalization, normalization against 18S exhibited no significance. Conclusion: This study proposes that TBP and RPL4 were suitable as stable RGs for qPCR study in bovine MSCs.

Estimation of Anti-proliferative Activity of Saccharin against Various Cancer Cell Lines and MSCs (다양한 암세포 주와 MSCs에 대한 Saccharin의 항증식성 평가)

  • Choi, Jeong Su;Park, Sang Yong;Yang, Man Gil;Lee, Dong Beom;Lee, Tae Bok;Heo, Ji Hye;Lee, Min Woo;Kim, Suhng Wook
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.3
    • /
    • pp.169-175
    • /
    • 2016
  • Saccharin (o-benzoic sulfimide) is the first artificial and non-caloric sweetener that was first synthesized in 1879. In this study, we examined the biological activity of saccharin against various human cancer cell lines and human bone marrow-derived mesenchymal stem cells. A viability assay based on the conversion of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was performed to test for the cytotoxicity of saccharin about the four human cancer cell lines (H460, H157, A549 and SKOV3), one murine cancer cellline (Raw264.7), and MSCs. In order to find the differentially expressed gene in saccharin-treated MSCs against untreated MSCs, we performed annealing control primer (ACP)-based differential display reverse transcriptionp-olymerase chain reaction (DDRT-PCR). All tested cells were treated with saccharin at various concentrations (0.0, 4.8, 7.2, 9.6, 12.0, 14.4 mg/mL) for 48 hr. The number of metabolically active cancer cells decreased when treated with the saccharin at various concentrations for 48 hr as compared with the untreated cells. The decrease in cell survival was more evident with increasing concentrations of saccharin. Moreover, novel candidate genes, which were differentially expressed in MSCs in response to saccharin, were identified in 16 bands on 2% agarose gel. This revealed 16-7 up-regulated and 9 down-regulated-differentially expressed genes indicated by arrows. One of these candidate genes was a FK506-binding protein gene. The functional roles of FK506 binding proteins, with respect to the activities of stem cell proliferation, were not characterized. Further studies are required to get a better understanding of FK506-binding proteins in its roles in increasing stem cell proliferative activities from using saccharin.