• Title/Summary/Keyword: merozoite surface protein-1

Search Result 13, Processing Time 0.018 seconds

Allelic Diversity of MSP1 Gene in Plasmodium falciparum from Rural and Urban Areas of Gabon

  • Mawili-Mboumba, Denise Patricia;Mbondoukwe, Noe;Adande, Elvire;Bouyou-Akotet, Marielle Karine
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.4
    • /
    • pp.413-419
    • /
    • 2015
  • The present study determined and compared the genetic diversity of Plasmodium falciparum strains infecting children living in 2 areas from Gabon with different malaria endemicity. Blood samples were collected from febrile children from 2008 to 2009 in 2 health centres from rural (Oyem) and urban (Owendo) areas. Genetic diversity was determined in P. falciparum isolates by analyzing the merozoite surface protein-1 (msp1) gene polymorphism using nested-PCR. Overall, 168 children with mild falciparum malaria were included. K1, Ro33, and Mad20 alleles were found in 110 (65.5%), 94 (55.9%), and 35 (20.8%) isolates, respectively, without difference according to the site (P>0.05). Allelic families' frequencies were comparable between children less than 5 years old from the 2 sites; while among the older children the proportions of Ro33 and Mad20 alleles were 1.7 to 2.0 fold higher at Oyem. Thirty-three different alleles were detected, 16 (48.5%) were common to both sites, and 10 out of the 17 specific alleles were found at Oyem. Furthermore, multiple infection carriers were frequent at Oyem (57.7% vs 42.2% at Owendo; P=0.04) where the complexity of infection was of 1.88 (${\pm}0.95$) higher compared to that found at Owendo ($1.55{\pm}0.75$). Extended genetic diversity of P. falciparum strains infecting Gabonese symptomatic children and high multiplicity of infections were observed in rural area. Alleles common to the 2 sites were frequent; the site-specific alleles predominated in the rural area. Such distribution of the alleles should be taken into accounts when designing MSP1 or MSP2 malaria vaccine.

PCR-RFLP for Rapid Subtyping of Plasmodium vivax Korean Isolates

  • Kang, Jung-Mi;Lee, Jinyoung;Kim, Tae Im;Koh, Eun-Ha;Kim, Tong-Soo;Sohn, Woon-Mok;Na, Byoung-Kuk
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.2
    • /
    • pp.159-165
    • /
    • 2017
  • Vivax malaria reemerged in Korea in 1993 and the outbreak has been continued with fluctuating numbers of annual indigenous cases. Understanding the nature of the genetic population of Plasmodium vivax circulating in Korea is beneficial for the knowledge of the nationwide parasite heterogeneity and in the implementation of malaria control programs in the country. Previously, we analyzed polymorphic nature of merozoite surface protein-1 (MSP-1) and MSP-$3{\alpha}$ in Korean P. vivax population and identified the Korean P. vivax population has been diversifying rapidly, with the appearance of parasites with new genetic subtypes, despite the recent reduction of the disease incidence. In the present study, we developed simple PCR-RFLP methods for rapid subtyping of MSP-1 and MSP-$3{\alpha}$ of Korean P. vivax isolates. These PCR-RFLP methods were able to easily distinguish each subtype of Korean P. vivax MSP-1 and MSP-$3{\alpha}$ with high accuracy. The PCR-RFLP subtyping methods developed here would be easily applied to massive epidemiological studies for molecular surveillance to understand genetic population of P. vivax and to supervise the genetic variation of the parasite circulating in Korea.

Surveillance on the Vivax Malaria in Endemic Areas in the Republic of Korea Based on Molecular and Serological Analyses

  • Lee, Seong-Kyun;Hu, Fengyue;Firdaus, Egy Rahman;Park, Ji-Hoon;Han, Jin-Hee;Lee, Sang-Eun;Shin, Hyun-Il;Cho, Shin Hyeong;Park, Won Sun;Lu, Feng;Han, Eun-Taek
    • Parasites, Hosts and Diseases
    • /
    • v.58 no.6
    • /
    • pp.609-617
    • /
    • 2020
  • Plasmodium vivax reemerged in 1993. It has been sustained for more than 25 years and become one of the important indigenous parasitic diseases in northern and western parts of the Republic of Korea near the demilitarized zone. In particular, relapse is a significant concern for the control of malaria, as short- and long-term incubation periods vary among those infected in Korea. In this study, the prevalence of asymptomatic carriers was examined among residents of high endemic areas of vivax malaria during nonseasonal transmission of mosquitoes. Blood samples from 3 endemic regions in northwestern Korea were evaluated by microscopic examination, rapid diagnostic testing, and nested PCR to identify asymptomatic patients carrying malaria parasites in the community. However, no positive malaria case among residents of endemic areas was detected. Additionally, serological analysis was carried out to measure antibodies against 3 antigenic recombinant proteins of P. vivax, merozoite surface protein 1-19, circumsporozoite surface protein-VK210, and liver-stage antigen (PvLSA-N), by the protein array method. Interestingly, seropositivity of sera between previous exposure and samples without exposure to malaria was significantly higher using the PvLSA-N antigen than the other antigens, suggesting that PvLSA-N can be used as a serological marker to analyze the degree of exposure for malaria transmission in endemic areas. This indicates a very low asymptomatic carrier prevalence during the nonmalaria season in the endemic areas of Korea.