• Title/Summary/Keyword: mercury ions

Search Result 87, Processing Time 0.022 seconds

Effect of Vitamin C and GSH on the Hg Induced ROS (비타민 C와 글루타치온이 수은유도 ROS 생성에 미치는 영향)

  • Kwon, Kyoung-Jin;Sheen, Yhun-Yhong
    • Environmental Analysis Health and Toxicology
    • /
    • v.23 no.1
    • /
    • pp.33-39
    • /
    • 2008
  • The genotoxicity of mercury compounds have been investigated with a variety of genetic endpoints in prokaryotic and eukaryotic cells. The mercury ions are positively charged and easily form complexes with DNA by binding with negatively charged centers to cause mutagenesis. Further, the mercury ions can react with sulfhydryl (-SH) groups of proteins associated with DNA replication and alter genetic information. Another mechanism by which mercury damages DNA molecule is via its probable involvement of reactive oxygen species (ROS) and induces DNA strand breaks. In order to investigate whether the ROS production was induced by mercury, we performed ROS assay. As the result, the ROS production was significantly increased when it grows dose-dependently and time-dependently. We compared mercury alone-treated group and mercury co-treated with Vitamin C or glutathione group. As the result, the ROS production induced by mercury was decreased by Vitamin C and glutathione. Co-treated with Vitamin C and glutathione group was the most effective to lowering ROS production induced by mercury.

A highly effective route for removal of Hg2+ from the waste water using 3-nitrobenzelidenemalononitrile as a modifier of Fe3O4@SiO2 nanoparticles

  • Mosleh Mehryar;Ghasem Marandi
    • Advances in nano research
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • SiO2-coated magnetic nanoparticles (Fe3O4@SiO2 NPs) were modified by 3-nitrobenzelidenmalononitrile and used as green linkages for removal of Hg2+ form the wastewater. In this research, it has been attempted to refer to the harmful effects of mercury ions for living things and how to remove such ions using very easy and practical technique. This study shows that by optimizing the test conditions, the efficiency of the removal of harmful ions such as mercury from the water contaminated with these ions can be increased. Conditions such as temperature, speed of agitation, pH of solution were tested for removal of mercury ions. The advantages of this method over other methods listed in the article are the rapid and easy nanocry synthesis. The generated and modified Fe3O4@SiO2 nanoparticles were characterized by X-ray diffraction, fourier transform infrared and scanning electron microscopy spectroscopy. The results show that the synthesized magnetic nanoparticles have the excellent performance for the removal of mercury(II) ion from the waste water.

Development of Rhodamine-Based Fiber Optic Sensor for Detection of Mercury in Aqueous Environments (수용액 환경에서 수은 측정을 위한 로다민 기반의 광섬유 센서 개발)

  • Lee, Ae Ri;Kim, Yong Il;Kim, Beom Kyu;Park, Byung Gi
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.173-177
    • /
    • 2014
  • A Rhodamine-based fiber-optic sensor has been developed to detect mercury ions in aqueous environments. The fiber-optic sensor was composed of a mercury-sensing thin film, plastic optical fibers, and a spectrometer. The mercury-sensing thin film with the synthesized Rhodamine derivatives was fabricated with Sol-Gel process. A light emitted by a light source is guided by plastic optical fibers into the thin film in an aqueous solution and a reflected light is analyzed with the spectrometer. The experiment exhibits that an absorbance in the thin film is increased as mercury concentration is increased in the solution and the absorbance by mercury is higher than that by other heavy metals. The fiber-optic sensor exhibits high chromogenic phenomenon of mercury ions among various heavy metals and the correlation between absorbance and mercury concentration in the aqueous environments.

Selective Trace Analysis of Mercury (II) Ions in Aqueous Media Using SERS-Based Aptamer Sensor

  • Lee, Chank-Il;Choo, Jae-Bum
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.2003-2007
    • /
    • 2011
  • We report a highly sensitive surface-enhanced Raman scattering (SERS) platform for the selective trace analysis of mercury (II) ions in drinkable water using aptamer-conjugated silver nanoparticles. Here, an aptamer designed to specifically bind to $Hg^{2+}$ ions in aqueous solution was labelled with a TAMRA moiety at the 5' end and used as a Raman reporter. Polyamine spermine tetrahydrochloride (spermine) was used to promote surface adsorption of the aptamer probes onto the silver nanoparticles. When $Hg^{2+}$ ions are added to the system, binding of $Hg^{2+}$ with T-T pairs results in a conformational rearrangement of the aptamer to form a hairpin structure. As a result of the reduced of electrostatic repulsion between silver nanoparticles, aggregation of silver nanoparticles occurs, and the SERS signal is significantly increased upon the addition of $Hg^{2+}$ ions. Under optimized assay conditions, the concentration limit of detection was estimated to be 5 nM, and this satisfies a limit of detection below the EPA defined limit of 10 nM in drinkable water.

Selective determination of mercury (II) ion in aqueous solution by chemiluminescence method (화학발광법에 의한 수용액 중의 선택적 수은(II) 이온 정량)

  • Kim, Kyung-Min;Jang, Taek-Gyun;Kim, Young-Ho;Oh, Sang-Huyb;Lee, Sang-Hak
    • Analytical Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.243-248
    • /
    • 2011
  • A selective determination method of mercury (II) ion in aqueous solution by luminol-based chemiluminescence system (luminol CL system) has been developed. Determination of metal ions such as copper (II), iron (III), chromium (III) ion in solution by the luminol CL system using its catalytic role in the reaction of luminol and hydrogen peroxide has been reported by several groups. In this study, the catalytic activity of mercury (II) ion in the reaction of luminol and hydrogen peroxide was observed by the enhanced CL intensity of the luminol CL system. Based on this phenomenon, experimental conditions of the luminol CL system were investigated and optimized to determine mercury (II) ion in aqueous solution. While mercury (II) ion in mixed sample solution containing mercury (I) and (II) ions highly enhanced the CL intensity of the luminol CL system, the mercury (I) ion could not enhanced the CL intensity. Thus selective determination of the mercury (II) ions in a mixture containing mercury (I) and (II) ions could be achieved. Each concentration of mercury (I) and (II) ions in aqueous solution can be obtained from the results of the CL method that give the concentration of only mercury (II) ion and the inductively coupled plasma (ICP) method that give the total concentration of mercury ions. On the optimized conditions, the calibration curve of mercury (II) ion was linear over the range from $1.25{\times}10^{-5}$ to $2.50{\times}10^{-3}M$ with correlation coefficient of 0.991. The detection limit of mercury (II) ion in aqueous solution was calculated to be $1.25{\times}10^{-7}M$.

The Influence of Butyl Alcohol on the Distribution Coefficients of Metal Ions (금속이온의 분포계수에 미치는 부틸알코올의 영향)

  • Dong Won Kim
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.21-25
    • /
    • 1981
  • A study was made of the influence of butyl alcohol on the distribution coefficients of barium and mercury ions between the ion exchange resin, Dowex 50w-x8, 200~400 mesh and solutions containing hydrochloric acid, butyl alcohol and water. The determination of the distribution coefficients of barium and mercury are made by using the batch method. The distribution coefficients of metal ions decrease generally as the number of branches of carbon in the molecule of butyl alcohol increase. It shows that solubility in water and stereo-isomerism of the butyl alcohol have influence upon the distribution coefficient of barium and mercury.

  • PDF

Mercury Adsorption Behaviors of Copper/Activated Carbons by Electroless Plating

  • Bae, Kyong-Min;Kim, Byung-Joo;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.304-304
    • /
    • 2009
  • In this study, the adsorption behaviors of mercury ions on the electroless Cu-plated activated carbons have been investigated. The amount of copper on activated carbons have been confirmed by atomic absorption spectrophotometer (AAS). The surface properties of the ACs studied have been characterized by using Boehm's titration method and scanning electron microscopy (SEM).Experimental results showed the adsorption capacity of mercury ions was increased as the electroless Cu plating. This was probably due to the introduction of copper on ACs leaded to an increase in the surface basicity.

  • PDF

Determination of Mercury Ion in Contaminated Soil by Rhodamine B Hydrazide (형광화학센서를 이용한 용출기반 토양 수은 오염조사)

  • Kim, Kyungtae;Park, Junboum
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.3
    • /
    • pp.1-5
    • /
    • 2016
  • Rhodamine B Hydrazide as a novel fluorescent and colorimetric probe exhibiting remarkably selective fluorescence enhancement toward Hg2+ ion over other 16 metal ions is herein introduced. The probe reacts with Hg2+ ion followed by its spirolactam ring-opening to give a remarkable enhancement of absorption maximum at 550 nm as well as an enhanced fluorescence intensity at 580 nm in aqueous media. Upon titration with Hg2+ ion in various concentration of 10~200 uM, we found that the probe shows a marked color change from colorless to pink, enabling naked-eye detection toward mercury ion. In addition, in the presence of Hg2+ ion, the probe gave rise to change from non-florescence to strong orange fluorescence (Off-On) with a good linearity of R2=0.97. This preliminary results demonstrate that the fluorescent chemosensor we herein introduced can open a new strategy for marked selective and sensitive detection of mercury ions in contaminated soil containing various metal ions.

Synthesis of a New Hexadendates Schiff's Base and Its Application in the Fabrication of a Highly Selective Mercury(II) Sensor

  • Ganjali, M.R.;Norouzi, P.;Alizadeh, T.;Salavati-Niasari, M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.68-72
    • /
    • 2007
  • A new PVC membrane potentiometric sensor that is highly selective to Hg2+ ions was prepared, using bis(2-hydroxybenzophenone) butane-2,3-dihydrazone (HBBD) as an excellent hexadendates neutral carrier. The sensor works satisfactorily in the concentration range of 1.0 × 10-6 to 1.0 × 10-1 mol L-1 (detection limit 4 × 10-7 mol L-1) with a Nernstian slope of 29.7 mV per decade. This electrode showed a fast response time (~8 s) and was used for at least 12 weeks without any divergence. The sensor exhibits good Hg2+ selectivity for a broad range of common alkali, alkaline earth, transition and heavy metal ions (lithium, sodium, potassium, magnesium, calcium, copper, nickel, cobalt, zinc, cadmium, lead and lanthanum). The electrode response is pH independent in the range of 1.5-4.0. Furthermore, the developed sensor was successfully used as an indicator electrode in the potentiometric titration of mercury ions with potassium iodide and the direct determination of mercury in some binary and ternary mixtures.

Ion-Sensitive Field Effect Transistor-Based Multienzyme Sensor for Alternative Detection of Mercury ions, Cyanide, and Pesticide

  • Vyacheslav, Volotovskky;Kim, Nam-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.373-377
    • /
    • 2003
  • Various groups of industrial and agricultural pollutants (heavy metal ions, cyanides, and pesticides) can be detected by enzymes. Since heavy metal ions inhibit urease, cyanides inhibit peroxidase, organophosphorus and carbamate pesticides inhibit butyrylcholinesterase, these enzymes were co-immobilized into a bovine serum albumin gel on the surface of an ion-sensitive field effect transistor to create a bioprobe that is sensitive to the compounds mentioned above. The sensitivity of the present sensor towards KCN corresponded to $1\;\mu\textrm{M}$ with 1 min of incubation time. The detection limits for Hg(II) ions and the pesticide carbofuran were 0.1 and $0.5\;\mu\textrm{M}$, respectively, when a 10 min sensor incubation time in contaminated samples was chosen. The total time for determining the concentrations of all species mentioned did not exceed 20 min.