As individual opinions are expressed and discussed through SNS, SNS is used as a new basis to estimate the direction of public opinion. This change also appears in election. So many voters state their views through SNS, so that candidates utilize it as a new space for communication. In this paper, positive mention in SNS were collected and analysed in the course of the election of Korean 20th Congressman, to understand how the mention on election in SNS affects the result of election. This result was compared with the traditional survey on public opinion, to find out which one more corresponds to the result. In conclusion, mention in SNS coincide more with the result of elelction than the traditional survey.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.247-251
/
2018
상호참조해결은 자연언어 문서 내에서 등장하는 명사구 언급(mention)과 이에 선행하는 명사구 언급을 찾아 같은 개체인지 정의하는 문제이다. 특히, 지식베이스 확장에 있어 상호참조해결은 언급 후보에 대해 선행하는 개체의 언급이 있는지 판단해 지식트리플 획득에 도움을 준다. 영어권 상호참조해결에서는 F1 score 73%를 웃도는 좋은 성능을 내고 있으나, 평균 정밀도가 80%로 지식트리플 추출에 적용하기에는 무리가 있다. 따라서 본 논문에서는 한국어 문서에 대해 영어권 상호참조해결 모델에서 사용되었던 최신 모델인 Bi-LSTM 기반의 딥 러닝 기술을 구현하고 이에 더해 언급 후보 목록을 만들어 개체명 유형과 경계를 적용하였으며 품사형태를 붙인 토큰을 사용하였다. 실험 결과, 문자 임베딩(Character Embedding) 값을 사용한 경우 CoNLL F1-Score 63.25%를 기록하였고, 85.67%의 정밀도를 보였으며, 같은 모델에 문자 임베딩을 사용하지 않은 경우 CoNLL F1-Score 67.92%와 평균 정밀도 77.71%를 보였다.
멘션(mention)은 명사 또는 명사구를 중심어로 가지며, 수식어를 포함하여 어떤 의미를 정의하는 구(chunk)를 구성한다. 문장 내에서 멘션을 추출하는 것을 멘션탐지라 한다. 멘션들 중에서 서로 같은 의미의 멘션들을 찾아내는 것을 상호참조해결이라 한다. 포인터 네트워크는 RNN encoder-decoder 모델을 기반으로, 주어진 입력 열에 대응되는 위치를 출력 결과로 갖는 모델이다. 본 논문에서는 멘션탐지에 포인터 네트워크를 이용할 것을 제안한다. 멘션탐지에 포인터 네트워크를 적용하면 기존의 sequence labeling 문제로는 해결할 수 없었던 중첩된 멘션탐지 문제를 해결할 수 있다. 실험 결과, 본 논문에서 제안한 멘션탐지의 성능이 규칙기반 보다 8%이상 높은 F1 80.75%를 보였으며, 이를 이용한 상호참조해결 성능이 CoNLL F1 52.69%로 규칙기반 멘션탐지를 이용한 상호참조해결에 비하여 2.29% 더 좋은 성능을 보였다.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.163-166
/
2018
개체명 연결이란 주어진 문장에 출현한 단어를 위키피디아와 같은 지식 기반 상의 하나의 개체와 연결하여 특정 개체가 무엇인지 식별하여 모호성을 해결하는 작업이다. 본 연구에서는 위키피디아의 링크를 이용하여 개체 표현(Entity mention)과 학습 데이터, 지식 기반을 구축한다. 또한, Mention/Context 쌍의 표현과 Entity 표현의 코사인 유사도를 이용하여 Score를 구하고, 이를 통해 개체명 연결 문제를 랭킹 문제로 변환한다. 개체의 이름과 분류뿐만 아니라 개체의 설명, 개체 임베딩 등의 자질을 이용하여 모델을 확장하고 결과를 비교한다. 확장된 모델의 개체 링킹 성능은 89.63%의 정확도를 보였다.
The Transactions of The Korean Institute of Electrical Engineers
/
v.62
no.3
/
pp.312-321
/
2013
In this study, we review the status of Southwest sea 2.5GW offshore wind project and expected various problems. And we suggest government policies for offshore wind industrialization. Especially, we would like to mention the necessity of offshore wind development in order to diversify power sources and guarantee energy security in Korea. And we would like to mention necessity and direction to make offshore wind into growth engine industry thorough fusion between industries and energization for the existing industry such as civil, shipbuilding, steel, etc. that was headed into downturn.
Annual Conference on Human and Language Technology
/
2016.10a
/
pp.152-156
/
2016
멘션(mention)은 명사 또는 명사구를 중심어로 가지며, 수식어를 포함하여 어떤 의미를 정의하는 구(chunk)를 구성한다. 문장 내에서 멘션을 추출하는 것을 멘션탐지라 한다. 멘션들 중에서 서로 같은 의미의 멘션들을 찾아내는 것을 상호참조해결이라 한다. 포인터 네트워크는 RNN encoder-decoder 모델을 기반으로, 주어진 입력 열에 대응되는 위치를 출력 결과로 갖는 모델이다. 본 논문에서는 멘션탐지에 포인터 네트워크를 이용할 것을 제안한다. 멘션탐지에 포인터 네트워크를 적용하면 기존의 sequence labeling 문제로는 해결할 수 없었던 중첩된 멘션탐지 문제를 해결할 수 있다. 실험 결과, 본 논문에서 제안한 멘션탐지의 성능이 규칙기반 보다 8%이상 높은 F1 80.75%를 보였으며, 이를 이용한 상호참조해결 성능이 CoNLL F1 52.69%로 규칙기반 멘션탐지를 이용한 상호참조해결에 비하여 2.29% 더 좋은 성능을 보였다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.233-236
/
2020
개체 연결 태스크는 문장 내에 등장하는 멘션(Mention)들을 위키피디아(Wikipedia)와 같은 지식 베이스 상의 실제 개체에 연결하는 태스크이다. 본 논문에서는 각 멘션을 시멘틱(Semantic)으로 분류하여 각 시멘틱별 추가 학습을 진행할 수 있는 Adapter Memory Network 모델을 제안한다. 이는 각 시멘틱 별 학습을 하나의 통합된 과정으로 진행하도록 하는 모델이며, 본 논문에서는 Adapter Memory Network 모델을 통해 기존 개체 연결 태스크에서 높은 성능을 보이는 NIL 멘션 탐지와 개체 연결의 통합 모델의 성능을 향상시켰음을 보인다.
In this article, we mention some subsequent developments of the theory of cluster sets, and present a new boundary cluster set for a simply connected domain in the complex plane and its applications.
Entity Linking find the meaning of an entity mention, which indicate the entity using different expressions, in a user's query by linking the entity mention and the entity in the knowledge base. This task has four challenges, including the difficult knowledge base construction problem, multiple presentation of the entity mention, ambiguity of entity linking, and NIL entity recognition. In this paper, we first construct the entity name dictionary based on Wikipedia to build a knowledge base and solve the multiple presentation problem. We then propose various methods for NIL entity recognition and solve the ambiguity of entity linking by training the support vector machine based on several features, including the similarity of the context, semantic relevance, clue word score, named entity type similarity of the mansion, entity name matching score, and object popularity score. We sequentially use the proposed two methods based on the constructed knowledge base, to obtain the good performance in the entity linking. In the result of the experiment, our system achieved 83.66% and 90.81% F1 score, which is the performance of the NIL entity recognition to solve the ambiguity of the entity linking.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.