• Title/Summary/Keyword: mention

Search Result 588, Processing Time 0.021 seconds

Analysis of the effect of the mention in SNS on the result of election (SNS의 관심도가 선거결과에 미치는 영향 분석)

  • Choi, Eun-Jung;Choi, Sea-Won;Lee, Se-Yeon;Kim, Myhung-Joo
    • Journal of Digital Convergence
    • /
    • v.15 no.2
    • /
    • pp.191-197
    • /
    • 2017
  • As individual opinions are expressed and discussed through SNS, SNS is used as a new basis to estimate the direction of public opinion. This change also appears in election. So many voters state their views through SNS, so that candidates utilize it as a new space for communication. In this paper, positive mention in SNS were collected and analysed in the course of the election of Korean 20th Congressman, to understand how the mention on election in SNS affects the result of election. This result was compared with the traditional survey on public opinion, to find out which one more corresponds to the result. In conclusion, mention in SNS coincide more with the result of elelction than the traditional survey.

Korean Co-reference Resolution End-to-End Learning using Bi-LSTM with Mention Features (언급 특질을 이용한 Bi-LSTM 기반 한국어 상호참조해결 종단간 학습)

  • Shin, Giyeon;Han, Kijong;Lee, Minho;Kim, Kuntae;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.247-251
    • /
    • 2018
  • 상호참조해결은 자연언어 문서 내에서 등장하는 명사구 언급(mention)과 이에 선행하는 명사구 언급을 찾아 같은 개체인지 정의하는 문제이다. 특히, 지식베이스 확장에 있어 상호참조해결은 언급 후보에 대해 선행하는 개체의 언급이 있는지 판단해 지식트리플 획득에 도움을 준다. 영어권 상호참조해결에서는 F1 score 73%를 웃도는 좋은 성능을 내고 있으나, 평균 정밀도가 80%로 지식트리플 추출에 적용하기에는 무리가 있다. 따라서 본 논문에서는 한국어 문서에 대해 영어권 상호참조해결 모델에서 사용되었던 최신 모델인 Bi-LSTM 기반의 딥 러닝 기술을 구현하고 이에 더해 언급 후보 목록을 만들어 개체명 유형과 경계를 적용하였으며 품사형태를 붙인 토큰을 사용하였다. 실험 결과, 문자 임베딩(Character Embedding) 값을 사용한 경우 CoNLL F1-Score 63.25%를 기록하였고, 85.67%의 정밀도를 보였으며, 같은 모델에 문자 임베딩을 사용하지 않은 경우 CoNLL F1-Score 67.92%와 평균 정밀도 77.71%를 보였다.

  • PDF

Mention Detection using Pointer Networks (포인터 네트워크를 이용한 멘션탐지)

  • Park, Cheoneum;Lee, Changki
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.152-156
    • /
    • 2016
  • 멘션(mention)은 명사 또는 명사구를 중심어로 가지며, 수식어를 포함하여 어떤 의미를 정의하는 구(chunk)를 구성한다. 문장 내에서 멘션을 추출하는 것을 멘션탐지라 한다. 멘션들 중에서 서로 같은 의미의 멘션들을 찾아내는 것을 상호참조해결이라 한다. 포인터 네트워크는 RNN encoder-decoder 모델을 기반으로, 주어진 입력 열에 대응되는 위치를 출력 결과로 갖는 모델이다. 본 논문에서는 멘션탐지에 포인터 네트워크를 이용할 것을 제안한다. 멘션탐지에 포인터 네트워크를 적용하면 기존의 sequence labeling 문제로는 해결할 수 없었던 중첩된 멘션탐지 문제를 해결할 수 있다. 실험 결과, 본 논문에서 제안한 멘션탐지의 성능이 규칙기반 보다 8%이상 높은 F1 80.75%를 보였으며, 이를 이용한 상호참조해결 성능이 CoNLL F1 52.69%로 규칙기반 멘션탐지를 이용한 상호참조해결에 비하여 2.29% 더 좋은 성능을 보였다.

  • PDF

Neural Network Model for Named Entitiy Linking using Wikipedia Link Data (위키피디아 링크 데이터를 이용한 Neural Network Model 기반 한국어 개체명 연결)

  • Lee, Young-Hoon;Na, Seung-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.163-166
    • /
    • 2018
  • 개체명 연결이란 주어진 문장에 출현한 단어를 위키피디아와 같은 지식 기반 상의 하나의 개체와 연결하여 특정 개체가 무엇인지 식별하여 모호성을 해결하는 작업이다. 본 연구에서는 위키피디아의 링크를 이용하여 개체 표현(Entity mention)과 학습 데이터, 지식 기반을 구축한다. 또한, Mention/Context 쌍의 표현과 Entity 표현의 코사인 유사도를 이용하여 Score를 구하고, 이를 통해 개체명 연결 문제를 랭킹 문제로 변환한다. 개체의 이름과 분류뿐만 아니라 개체의 설명, 개체 임베딩 등의 자질을 이용하여 모델을 확장하고 결과를 비교한다. 확장된 모델의 개체 링킹 성능은 89.63%의 정확도를 보였다.

  • PDF

Study on Present Status and Future Direction of Korean Offshore Wind Power (한국의 해상풍력 현황과 발전방향에 관한 연구)

  • Sung, Jin Ki;Lee, Tae Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.312-321
    • /
    • 2013
  • In this study, we review the status of Southwest sea 2.5GW offshore wind project and expected various problems. And we suggest government policies for offshore wind industrialization. Especially, we would like to mention the necessity of offshore wind development in order to diversify power sources and guarantee energy security in Korea. And we would like to mention necessity and direction to make offshore wind into growth engine industry thorough fusion between industries and energization for the existing industry such as civil, shipbuilding, steel, etc. that was headed into downturn.

Mention Detection using Pointer Networks (포인터 네트워크를 이용한 멘션탐지)

  • Park, Cheoneum;Lee, Changki
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.152-156
    • /
    • 2016
  • 멘션(mention)은 명사 또는 명사구를 중심어로 가지며, 수식어를 포함하여 어떤 의미를 정의하는 구(chunk)를 구성한다. 문장 내에서 멘션을 추출하는 것을 멘션탐지라 한다. 멘션들 중에서 서로 같은 의미의 멘션들을 찾아내는 것을 상호참조해결이라 한다. 포인터 네트워크는 RNN encoder-decoder 모델을 기반으로, 주어진 입력 열에 대응되는 위치를 출력 결과로 갖는 모델이다. 본 논문에서는 멘션탐지에 포인터 네트워크를 이용할 것을 제안한다. 멘션탐지에 포인터 네트워크를 적용하면 기존의 sequence labeling 문제로는 해결할 수 없었던 중첩된 멘션탐지 문제를 해결할 수 있다. 실험 결과, 본 논문에서 제안한 멘션탐지의 성능이 규칙기반 보다 8%이상 높은 F1 80.75%를 보였으며, 이를 이용한 상호참조해결 성능이 CoNLL F1 52.69%로 규칙기반 멘션탐지를 이용한 상호참조해결에 비하여 2.29% 더 좋은 성능을 보였다.

  • PDF

Semantic-specific Adapter memory network for Mention detection entity linking (시멘틱 특화 Adapter 메모리 네트워크에 기반한 멘션 추출 및 개체 연결)

  • Lee, Jong-Hyeon;Na, Seung-Hoon;Kim, Hyun-Ho;Kim, Seon-Hoon;Kang, Inho
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.233-236
    • /
    • 2020
  • 개체 연결 태스크는 문장 내에 등장하는 멘션(Mention)들을 위키피디아(Wikipedia)와 같은 지식 베이스 상의 실제 개체에 연결하는 태스크이다. 본 논문에서는 각 멘션을 시멘틱(Semantic)으로 분류하여 각 시멘틱별 추가 학습을 진행할 수 있는 Adapter Memory Network 모델을 제안한다. 이는 각 시멘틱 별 학습을 하나의 통합된 과정으로 진행하도록 하는 모델이며, 본 논문에서는 Adapter Memory Network 모델을 통해 기존 개체 연결 태스크에서 높은 성능을 보이는 NIL 멘션 탐지와 개체 연결의 통합 모델의 성능을 향상시켰음을 보인다.

  • PDF

ON GENERALIZED BOUNDARY CLUSTER SETS

  • Chung, Bo-Hyun
    • Korean Journal of Mathematics
    • /
    • v.14 no.1
    • /
    • pp.65-70
    • /
    • 2006
  • In this article, we mention some subsequent developments of the theory of cluster sets, and present a new boundary cluster set for a simply connected domain in the complex plane and its applications.

  • PDF

A Method to Solve the Entity Linking Ambiguity and NIL Entity Recognition for efficient Entity Linking based on Wikipedia (위키피디아 기반의 효과적인 개체 링킹을 위한 NIL 개체 인식과 개체 연결 중의성 해소 방법)

  • Lee, Hokyung;An, Jaehyun;Yoon, Jeongmin;Bae, Kyoungman;Ko, Youngjoong
    • Journal of KIISE
    • /
    • v.44 no.8
    • /
    • pp.813-821
    • /
    • 2017
  • Entity Linking find the meaning of an entity mention, which indicate the entity using different expressions, in a user's query by linking the entity mention and the entity in the knowledge base. This task has four challenges, including the difficult knowledge base construction problem, multiple presentation of the entity mention, ambiguity of entity linking, and NIL entity recognition. In this paper, we first construct the entity name dictionary based on Wikipedia to build a knowledge base and solve the multiple presentation problem. We then propose various methods for NIL entity recognition and solve the ambiguity of entity linking by training the support vector machine based on several features, including the similarity of the context, semantic relevance, clue word score, named entity type similarity of the mansion, entity name matching score, and object popularity score. We sequentially use the proposed two methods based on the constructed knowledge base, to obtain the good performance in the entity linking. In the result of the experiment, our system achieved 83.66% and 90.81% F1 score, which is the performance of the NIL entity recognition to solve the ambiguity of the entity linking.