• Title/Summary/Keyword: meniscus effect

Search Result 43, Processing Time 0.025 seconds

Acute Subdural Hematoma after Accidental Dural Puncture During Epidural Anesthesia

  • Kim, Il-Sup;Lee, Sang-Won;Son, Byung-Chul;Hong, Jae-Taek
    • Journal of Korean Neurosurgical Society
    • /
    • v.40 no.5
    • /
    • pp.384-386
    • /
    • 2006
  • Acute subdural hematoma is an exceptionally rare, but life-threatening complication of spinal anesthesia. The authors report here on a case of acute subdural hematoma in a 52-year-old male who underwent an arthroscopic knee joint operation under spinal epidural anesthesia due to tearing of the medial meniscus. He complained of headache after surgery. Computed tomography[CT] revealed acute subdural hematoma in the right fronto-tempo-parietal area. The headache progressed in spite of analgesics and bed rest; two weeks later, the CT showed subacute subdural hematoma with a mass effect. The patient improved after surgical decompression. The pathogenesis of subdural hematoma formation after dural puncture is discussed and we briefly review the relevant literature. Prolonged and severe postdural puncture headache[PDPH] should be viewed with suspicion and investigated promptly to rule out any intracranial complications. Immediate treatment of the PDPH with an epidural blood patch to prevent further CSF leakage should be considered.

Soil Properties in Relation to Elastic Wave (탄성파를 이용한 흙의 특성연구)

  • 조계춘;이인모
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.6
    • /
    • pp.83-101
    • /
    • 2002
  • Elastic waves provide an important information about the soil mass in the near-surface. Soil properties in relation to elastic wave parameters are clarified to facilitate the application of geophysical technique to soil characterization. As an example, experiments are performed to gain further insight into the behavior of unsaturated particulate materials using bender elements. The small strain stiffness is continuously measured on specimens subjected to drying, and changes in stiffness are related to changes in interparticle forces such as capillarity, bonding due to ion sharing, buttress effect due to fine migration, and cementation due to salt precipitation. The rate of menisci regeneration is studied after a perturbation as well. Finally, several phenomena associated with the evolution of capillary forces during drying are identified.

Nano-scale adhesion and friction on Si wafer with the tip size using AFM

  • R. Arvind Singh;Yoon, Eui-Sung;Oh, Hyun-Jin;Kong, Ho-Sung
    • KSTLE International Journal
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • Nano-scale studies on adhesion and friction were conducted in Si-wafer (100) using Atomic Force Microscopy (AFM). Glass (Borosilicate) balls of radii 0.32$\mu\textrm{m}$, 1.25$\mu\textrm{m}$, and 2.5$\mu\textrm{m}$, mounted on cantilever (Contact Mode type NPS) were used as tips. Adhesion and friction between Si-wafer and glass tips were measured at ambient temperature (24${\pm}$1$^{\circ}C$) and humidity (45${\pm}$5%). Friction was measured as a function of applied normal load in the range of 0-160 nN. Results showed that, both adhesion and friction increased with the tip radii. Also, friction increased linearly as a function of applied normal load. The effect of tip size on adhesion and friction was explained as the influence of the capillary force exerted by meniscus and that of the contact area on these parameters respectively. The coefficient of friction was estimated in two different ways, as the slope from the plot of friction force against the applied normal load and as the ratio between the friction force and the applied normal load. Both these estimates showed that the coefficient of friction increased with the tip size. Further, the influence of the adhesion force on the coefficient of friction was also discussed.

Fabrication of Cylindrical Microlens Using Slot-die Coating and Thermal Reflow Method (슬롯 다이 코팅과 Thermal Reflow방법을 이용한 Cylindrical 마이크로렌즈 제조)

  • Lee, Jinyoung;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.30-35
    • /
    • 2020
  • A microlens has been fabricated by various methods such as a thermal reflow, hot embossing, diamond milling, etc. However, these methods require a relatively complex process to control the microlens shape. In this work, we report on a simple and cost-effective method to fabricate a cylindrical microlens (CML), which can diffuse light widely. We have employed a slot-die head with the dual plate (a meniscus guide with a protruded μ-tip and a shim with a slit channel) for coating of a narrow stripe using poly(methyl methacrylate) (PMMA). We have shown that the higher the coating gap, the lower the maximum coating speed, which causes an increase in the stripe width and thickness. The coated PMMA stripe has the concave shape. To make it in the shape of a convex microlens, we have applied the thermal reflow method. When the stripe thickness is small, however, its effect is negligible. To increase the stripe thickness, we have increased the number of repeated coating. With this scheme, we have fabricated the CML with the width of 223 ㎛ and the thickness of 7.3 ㎛. Finally, we have demonstrated experimentally that the CML can diffuse light widely, a feature demanded for light extraction efficiency of organic light-emitting diodes (OLEDs) and suppression of moiré patterns in displays.

A study on the characteristics of Pb free Sn-2%Ag-x%Bi solder alloys (Pb Free Sn-2%Ag-x%Bi계 Solder의 특성에 관한 연구)

  • 흥순국;박일경;강정윤
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.148-156
    • /
    • 1998
  • The purpose of this study is to investigate the characteristics of Pb-Free Sn-2%Ag-Bi solder alloys. The solder alloys used in this study is Sn-2%Ag-(3,5,7,9%) Bi It is examined that their properties such as melting range, wettability, microstructure, microhardness, and tensile property. The addition of Bi(3,5,7,9%) lowered the melting point of the solder and the melting range was 196~203$^{\circ}C$. The wettability of the solder as equal to that of Sn-37% Pb solder. The morphology of structure did not change largely by addition of Bi. But the structure of cellular dendrite of linear type displayed. The tensile strength of the solder was superior to that of Sn-37%Pb solder. But the elongation was inferior to that of Sn-37%Pb solder. The hardness of Sn-2%Ag solder was tow times and that of Sn-2%Ag-Bi solder was three times of that in Sn-37%Pb solder. But the effect of increment of Bi content did not change largely.

  • PDF

Effect of Processing Parameters on the Formation of Large Area Self-Assembled Monolayer of Polystyrene Beads by a Convective Self-Assembly Method (대류성 자기조립법을 통한 폴리스티렌 비드 대면적 단일층 형성에 미치는 공정 변수 효과)

  • Seo, Ahn-na;Choi, Ji-Hwan;Pyun, Jae-chul;Kim, Won Mok;Kim, Inho;Lee, Kyeong-Seok
    • Korean Journal of Materials Research
    • /
    • v.25 no.12
    • /
    • pp.647-654
    • /
    • 2015
  • Self-assembled monolayers(SAM) of microspheres such as silica and polystyrene(PS) beads have found widespread application in photonic crystals, sensors, and lithographic masks or templates. From a practical viewpoint, setting up a high-throughput process to form a SAM over large areas in a controllable manner is a key challenging issue. Various methods have been suggested including drop casting, spin coating, Langmuir Blodgett, and convective self-assembly(CSA) techniques. Among these, the CSA method has recently attracted attention due to its potential scalability to an automated high-throughput process. By controlling various parameters, this process can be precisely tuned to achieve well-ordered arrays of microspheres. In this study, using a restricted meniscus CSA method, we systematically investigate the effect of the processing parameters on the formation of large area self-assembled monolayers of PS beads. A way to provide hydrophilicity, a prerequisite for a CSA, to the surface of a hydrophobic photoresist layer, is presented in order to apply the SAM of the PS beads as a mask for photonic nanojet lithography.

A Study of the Viscosity of Some Electrolytic Solutions and Its Concentration Function (電解質溶液의 粘度係數의 測定과 濃度關係에 對한 考察)

  • Sakong, Yull;Hwang, Jung-Eui
    • Journal of the Korean Chemical Society
    • /
    • v.8 no.1
    • /
    • pp.9-14
    • /
    • 1964
  • The viscosities of strong electrolytic solutions, such as KCl, KI and NaI have been measured over a fairy wide range of concentration variation (from 0.00002 to 3.7M). It was hoped that a study of the data in the light of modern theories on solution might reveal new relation between viscosity and surface tension of electrolytic solution. To secure more accurate measurements of viscosity and surface tension of the solutions, Ostwald viscometer was made with pyrex glass and modified the timing system for the transit of the meniscus with a new electronics system and with a pulse counter. As the experimental data obtained were in good agreement with the Jone's values, Jones-Dole equations for the electrolytic solutions were deduced, ${\eta}KCl\;=\;1\;+\;0.0052{\sqrt{c}}\;-\;0.01612c\;+\;0.00808c^2\;at\;30^{\circ}C$ ${\eta}KI\;=\;1\;+\;0.0220{\sqrt{c}}\;-\;0.01290c\;+\;0.02988c^2\;at\;25^{\circ}C$${\eta}Na\; =\;1\;+\;0.0240{\sqrt{c}}\;-\;0.0640c\;+\;0.03268c^2\;at\;25^{\circ}C$Gruneisen effect appeared in the dilute solution, whereas anti-Gruneisen effect was found for the extremely dilute solution. No satisfactory interpretation for the variation of the viscosity with concentration can be found at the present.

  • PDF

Electro-spray Micro-Thruster Using Nozzle with Pole-Type Electrode (기둥 구조 전극을 내재하는 노즐을 이용한 정전 분무 마이크로 추진기관)

  • Lee, Young-Jong;Yang, Ji-Hye;Lee, Suk-Han;Kim, Yong-Jae;Koh, Han-Seo;Byun, Do-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1115-1120
    • /
    • 2007
  • This paper presents a novel mechanism of electro-spray micro-thruster featured by a nozzle with a conductive pole inside, referred to here as a pole type nozzle. And the effects of the pole type nozzle on the efficiency of the jetting are numerically and experimentally investigated. The electric voltage signal applied to the upper electrode plate, against the pole as the ground, allows a ejection of spray to take place. It is verified experimentally that the use of the pole type nozzle allows a stable and sustainable jetting mode of ejection for a wider range of applied voltages because it can concentrate the electric field more on the centre of the meniscus. According to results about size effect, experiments indicates that the proposed mechanism allows that operation of micro thruster at less than 500 volts through nanoscale nozzle.

Numerical Simulation of Inkjet Drop Formation in Piezo Inkjet Head (피에조 잉크젯 헤드의 액적 토출 형상 전산해석)

  • Joo, Youngcheol;Park, Sangkug;Kwon, Key-Si
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.641-647
    • /
    • 2016
  • A drop-on-demand inkjet is used widely for various applications. Therefore, it is important to understand the jetting behavior of the drop from the piezo inkjet. In this study, to predict the jetting behavior, VOF (Volume-of-Fluid) simulation techniques were used and compared with the experimental results. The experimentally measured meniscus movement was used as the input data for the simulation. To verify the simulation, the measured jetting behavior of the mixture fluids of ethylene glycol and IPA (isopropyl alcohol), which has a mixing ratio of 50:50, was used. The numerical simulation of the drop formation using various mixture ratios and its comparison with the measured drop formation confirmed that the proposed method can predict the actual jetting. On the other hand, the satellite drop behavior showed slight differences because the small sized droplet is subject to a more aerodynamic effect during flight because the kinetic energy of the satellite droplet is far smaller than that of the main droplet.

Surface energy assisted gecko-inspired dry adhesives

  • Rahmawan, Yudi;Kim, Tae-Il;Kim, Seong-Jin;Lee, Kwang-Ryeol;Moon, Myoung-Woon;Suh, Kahp-Yang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.449-449
    • /
    • 2011
  • We reported the direct effect of intrinsic surface energy of dry adhesive material to the Van der Waals and capillary forces contributions of the total adhesion force in an artificial gecko-inspired adhesion system. To mimic the gecko foot we fabricated tilted nanohairy structures using both lithography and ion beam treatment. The nanohairy structures were replicated from Si wafer mold using UV curable polymeric materials. The control of nanohairs slanting angles was based on the uniform linear argon ion irradiation to the nanohairy polymeric surface. The surface energy was studied utilizing subsequent conventional oxygen ion treatment on the nanohairy structures which resulted in gradient surface energy. Our shear adhesion test results were found in good agreement with the accepted Van der Waals and capillary forces theory in the gecko adhesion system. Surface energy would give a direct impact to the effective Hamaker constant in Van der Waals force and the filling angle (${\varphi}$) of water meniscus in capillary force contributions of gecko inspired adhesion system. With the increasing surface energy, the effective Hamaker constant also increased but the filling angle decreased, resulting in a competition between the two forces. Using a simple mathematical model, we compared our experimental results to show the quantitative contributions of Van der Waals and capillary forces in a single adhesion system on both hydrophobic and hydrophilic surfaces. We found that the Van der Waals force contributes about 82.75% and 89.97% to the total adhesion force on hydrophilic and hydrophobic test surfaces, respectively, while the remaining contribution was occupied by capillary force. We also showed that it is possible to design ultrahigh dry adhesive with adhesion strength of more than 10 times higher than apparent gecko adhesion force by controlling the surface energy and the slanting angle induced-contact line of dry adhesive the materials.

  • PDF