• Title/Summary/Keyword: membrane-fusion protein

Search Result 126, Processing Time 0.035 seconds

Conformational Switch and Functional Regulation of Proteins (단백질의 구조 전환과 기능 조절)

  • Yu, Myeong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.3-6
    • /
    • 2001
  • In common globular proteins, the native form is in its most stable state. However, the native form of inhibitory serpins (serine protease inhibitors) and some viral membrane fusion proteins is in a metastable state. Metastability in these proteins is critical to their biological functions. Our previous studies revealed that unusual interactions, such as side-chain overpacking, buried polar groups, surface hydrophobic pockets, and internal cavities are the structural basis of the native metastability. To understand the mechanism by which these structural defects regulate protein functions, cavity-filling mutations of a 1-antitrypsin, a prototype serpin, were characterized. Increasing conformational stability is correlated with decreasing inhibitory activity. Moreover, the activity loss appears to correlate with the decrease in the rate of the conformational switch during complex formation with a target protease. We also increased the stability of a 1-antitrypsin greatly via combining various stabilizing single amino acid substitutions that were distributed throughout the molecule. The results showed that a substantial increase of stability, over 13 kcal/mol, affected the inhibitory activity with a correlation of 11% activity loss per kcal/mol. The results strongly suggest that the native metastability of proteins is indeed a structural design that regulates protein functions and that the native strain of a 1-antitrypsin distributed throughout the molecule regulates the inhibitory function in a concerted manner.

  • PDF

Physiological Function of NbRanBP1 in Nicotiana benthamiana

  • Cho, Hui-Kyung;Park, Jong-A;Pai, Hyun-Sook
    • Molecules and Cells
    • /
    • v.26 no.3
    • /
    • pp.270-277
    • /
    • 2008
  • This study addresses the physiological functions of the Ran-binding protein homolog NbRanBP1 in Nicotiana benthamiana. Virus-induced gene silencing (VIGS) of NbRanBP1 caused stunted growth, leaf yellowing, and abnormal leaf morphology. The NbRanBP1 gene was constitutively expressed in diverse tissues and an NbRanBP1:GFP fusion protein was primarily localized to the nuclear rim and the cytosol. BiFC analysis revealed in vivo interaction between NbRanBP1 and NbRan1 in the nuclear envelope and the cytosol. Depletion of NbRanBP1 or NbRan1 reduced nuclear accumulation of a NbBTF3:GFP marker protein. In the later stages of development, NbRanBP1 VIGS plants showed stress responses such as reduced mitochondrial membrane potential, excessive production of reactive oxygen species, and induction of defense-related genes. The molecular role of RanBP1 in plants is discussed in comparison with RanBP1 function in yeast and mammals.

Conformational Switch and Functional Regulation of Proteins (단백질의 구조 전환과 기능 조절)

  • 유명희
    • Electrical & Electronic Materials
    • /
    • v.14 no.12
    • /
    • pp.3-6
    • /
    • 2001
  • In common globular proteins, the native form is n its most stable state. However, the native form of inhibitory serpins (serine protease inhibitors) and some viral membrane fusion proteins is in a metastable state. Metastability in these proteins is critical to their biological functions. Our previous studies revealed that unusual interactions, such as side-chain overpacking, buried polar groups, surface hydrophobic pockets, ad internal cavities are the structural basis of the native metastability. To understand the mechanism by which these structural defects regulate protein functions, cavity-filling mutations of $\alpha$1-antitrypsin, a prototype serpin, were characterized. Increasing conformational stability is correlated with decreasing inhibitory activity. Moreover, the activity loss appears to correlate with the decrease in the rate of the conformational switch during complex formation with a target protease. We also increased the stability of $\alpha$1-antitrypsin greatly via combining various stabilizing single amino acid substitutions that were distributed throughout the molecule. The results showed that a substantial increase of stability, over 13 kcal/mol, affected the inhibitory activity with a correlation of 11% activity loss per kcal/mol. The results strongly suggest that the native metastability of proteins is indeed a structural design that regulates protein functions and that the native strain of $\alpha$1-antitrypsin distributed throughout the molecule regulates the inhibitory function in a concerted manner.

  • PDF

Conformational Switch and Functional Regulation of Proteins (단백질의 구조 전환과 기능 조절)

  • 유명희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.3-6
    • /
    • 2001
  • In common globular proteins, the native form is in its most stable state. However, the native form of inhibitory serpins (serine protease inhibitors) and some viral membrane fusion proteins is in a metastable state. Metastability in these Proteins is critical to their biological functions. Our previous studies revealed that unusual interactions, such as side-chain overpacking, buried polar groups, surface hydrophobic pockets, and internal cavities are the structural basis of the native metastability. To understand the mechanism by which these structural defects regulate protein functions, cavity-filling mutations of ${\alpha}$1-antitrypsin, a prototype serpin, were characterized. Increasing conformational stability is correlated with decreasing inhibitory activity. Moreover, the activity loss appears to correlate with the decrease in the rate of the conformational switch during complex formation with a target protease. We also increased the stability of ${\alpha}$1-antitrypsin greatly via combining various stabilizing single amino acid substitutions that were distributed throughout the molecule. The results showed that a substantial increase of stability, over 13 kcal/mol, affected the inhibitory activity with a correlation of 11% activity loss per kcal/mol. The results strongly suggest that the native metastability of proteins is indeed a structural design that regulates protein functions and that the native strain of e 1-antitrypsin distributed throughout the molecule regulates the inhibitory function in a concerted manner.

  • PDF

Generation and Characterization of Cell-Permeable Greem Fluorescent Protein Mediated by the Basic Domain of Human Immunodeficiency Virus Type 1 Tat

  • Park, Jin-Seu;Kim, Kyeong-Ae;Ryu, Ji-Yoon;Choi, Eui-Yul;Lee, Kil-Soo;Choi, Soo-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.6
    • /
    • pp.797-804
    • /
    • 2000
  • The human immunodeficiency virus type 1 (HIV-1) Tat is one of the viral gene products essential for HIV replication. The exogenous Tat protein is transduced through the plasma membrane and then accumulated in a cell. The basic domain of the Tat protein, which is rich in arginine and lysine residues and called the protein transduction domain (PTD), has been identified to be responsible for this transduction activity. To better understand the nature of the transduction mediated by this highly basic domain of HIV-1 Tat, the Green Fluorescent Protein (GFP) was expressed and purified as a fusion protein with a peptide derived from the HIV-1 Tat basic domain in Escherichia coli. The transduction of Tat-GFP into mammalian cells was then determined by a Western blot analysis and fluorescence microscopy. The cells treated with Tat-GFP exhibited dose- and time-dependent increases in their intracellular level of the protein. the effective transduction of denatured Tat-GFP into both the nucleus and the cytoplasm of mammalian cells was also demonstrated, thereby indicating that the unfolding of the transduced protein is required for efficient transduction. Accordingly, the availability of recombinant Tat-GFP can facilitate the simple and specific identification of the protein transduction mediated by the HIV-1 Tat basic domain in living cells either by fluorescence microscopy or by a fluorescence-activated cell sorter analysis.

  • PDF

Studies on the Fusion Mechanism of the Cell (1) (細胞의 融合機作에 관한 硏究(1))

  • Kang, Man-Sik;Seunhyon Choe;Wookeun Song
    • The Korean Journal of Zoology
    • /
    • v.26 no.4
    • /
    • pp.235-251
    • /
    • 1983
  • Several approaches have been made to access the mechanism of fusion in chick myoblast in vitro. Lactoperoxidase-catalyzed iodination was applied to labell cell surface proteins during myogenesis. Quantitative as well as qualitative changes were observed in $^131$I surface components of prefusion and postfusion cells. Two proteins with a molecular weight of 165K and 93K daltons were observed to appear at the onset of fusion as compared to prefusion stage. At the same time, 245K dalton protein decreased whereas the low molecular weight proteins increased consistently. The decrease of high molecular weight proteins appears to be associated with the cell cycle of myoblast during differentiation. The increased appearance of low molecular weight proteins might be due to the proteolytic cleavage of the high molecular weight proteins. Examination of intracellulr cAMP levels during fusion has revealed that a large but transient increase in cAMP occurs before the onset of fusion. This result suggests a causal relationship between the increase of cAMP and the onset of fusion, and further, that differentiating myoblasts are synthronized to a high degree. During the course of myoblast differentiation, at least four lowe molecular weight proteins, which different from major surface proteins iodinated, were identifiable in the culture medium. These proteins could be ascribed to be released from the membrane by proteolytic cleavage of surface proteins in the course of myoblast fusion. The significance of cell surface alterations and the released proteins during the fusion, the involvement of cAMP in the onset of fusion and the possibility that fusion is promoted by external factor(s) are discussed.

  • PDF

Structure and Function of NtCDPK1, a Calcium-dependent Protein Kinase in Tobccco

  • Yoon, Gyeong-Mee;Lee, Sang-Sook;Pai, Hyun-Sook
    • Journal of Plant Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.79-82
    • /
    • 2000
  • We have isolated a cDNA encoding a calcium-dependent protein kinase (CDPK) in Nicotiana tabacum, which was designated NtCDPK1. Accumulation of the NtCDPK1 mRNA was stimulated by various stimuli, including phytohormones, CaCl$_2$ wounding, fungal elicitors, chitin and methyl jasmonate. The NtCDPK1 gene encodes a functional Ser/Thr protein kinase of which phosphorylation activity is strongly induced by calcium. By analyzing expression of the NtCDPK1-GFP fusion protein and by immunoblotting with antibody which reacts with NtCDPK1, we found that NtCDPK1 is localized in membrane and nucleus in plant cells. Silencing expression of the NtCDPK1 transgene resulted in marked decrease of lateral root development in the transgenic tobacco plants. Yeast two hybrid screening using NtCDPK1 as a bait identified a tobacco homologue of proteasome regulatory subunit 21D7, designated Nt21D7. The 21D7 mRNA has been shown to be predominantly expressed in proliferating tissues in the cell cycledependent manner in carrot. The recombinant NtCDPK1 protein associated with Nt21D7 in vitro, and could phosphorylate the Nt21D7 protein in vitro in the presence of calcium, suggesting that Nt21D7 protein is a natural substrate of NtCDPK1 in tobacco. These results suggest that NtCDPK1 may regulate tell proliferation processes, such as lateral root formation, by regulating specificity and/or activity of proteasome-mediated protein degradation pathway.

  • PDF

Defective Mitochondrial Function and Motility Due to Mitofusin 1 Overexpression in Insulin Secreting Cells

  • Park, Kyu-Sang;Wiederkehr, Andreas;Wollheim, Claes B.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.1
    • /
    • pp.71-77
    • /
    • 2012
  • Mitochondrial dynamics and distribution is critical for their role in bioenergetics and cell survival. We investigated the consequence of altered fission/fusion on mitochondrial function and motility in INS-1E rat clonal ${\beta}$-cells. Adenoviruses were used to induce doxycycline-dependent expression of wild type (WT-Mfn1) or a dominant negative mitofusin 1 mutant (DN-Mfn1). Mitochondrial morphology and motility were analyzed by monitoring mitochondrially-targeted red fluorescent protein. Adenovirus-driven overexpression of WT-Mfn1 elicited severe aggregation of mitochondria, preventing them from reaching peripheral near plasma membrane areas of the cell. Overexpression of DN-Mfn1 resulted in fragmented mitochondria with widespread cytosolic distribution. WT-Mfn1 overexpression impaired mitochondrial function as glucose- and oligomycin-induced mitochondrial hyperpolarization were markedly reduced. Viability of the INS-1E cells, however, was not affected. Mitochondrial motility was significantly reduced in WT-Mfn1 overexpressing cells. Conversely, fragmented mitochondria in DN-Mfn1 overexpressing cells showed more vigorous movement than mitochondria in control cells. Movement of these mitochondria was also less microtubule-dependent. These results suggest that Mfn1-induced hyperfusion leads to mitochondrial dysfunction and hypomotility, which may explain impaired metabolism-secretion coupling in insulin-releasing cells overexpressing Mfn1.

Crystal Structure of p97 N-D1 Hexamer in Complex with p47 UBX Domain

  • Thang Quyet Nguyen;Wonchull Kang
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.1
    • /
    • pp.25-31
    • /
    • 2024
  • The p97 adenosine triphosphatase is a key player in protein homeostasis, responsible for unfolding ubiquitylated substrates. It engages with various adaptor proteins through its N-terminal domain, with the p97-p47 complex attracting particular attention for its involvement in membrane remodeling. Although the structures of p97 in complex with the Ubiquitin regulatory X (UBX) domain from various adaptors have been reported, the stoichiometry is conflicting. Here, we report the crystal structure of the p97 N-D1 hexamer in complex with the p47 UBX domain at a resolution of 2.7 Å. The structure reveals a stoichiometry of 6:6 between the p97 N-D1 and the p47 UBX domain. These findings provide valuable insights into the binding stoichiometry of p97 N-D1 and p47 UBX domain, which are crucial for understanding the role of p97 and adaptor proteins in cellular processes such as the ubiquitin-proteasome pathway, membrane fusion, and cell cycle regulation.

Development of Olfactory Biosensor Using Olfactory Receptor Proteins Expressed in E. coli

  • Seong, Jong-Hwan;Go, Hwi-Jin;Park, Tae-Hyeon
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.639-642
    • /
    • 2003
  • Olfactory receptor protein ODR10 was expressed in E.coli as fusion protein with GST and His6 Tag. Crude membrane extract of the expressed protein was coated on the surface of quartz crystal microbalance, and the interaction of the ODR10 with several odorants was examined. Although the expression level was very low, quartz crystal microbalance showed that the expressed protein interacted most strongly with diacetyl (butanedione), which is known to bind to the ODR10 protein selectively. The interaction between ODR10 and diacetyl was $5{\sim}10$ times stronger than the interaction between ODR10 and other odorants. Thus, E. coli cells expressing the olfactory receptor protein could be used as an olfactory biosensor. Also, such system could be used to test which olfactory receptor reacts specifically with which odorant molecules, since there has been no cheap and convenient way to test the interaction of olfactory receptors and odorant molecules yet.

  • PDF