• 제목/요약/키워드: membrane-fusion protein

검색결과 126건 처리시간 0.029초

A Study on Gamma ray effects on Stress Response and Cellular Toxicity using Bacterial Cells

  • 민지호;이현주;이창우;구만복
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.187-190
    • /
    • 2000
  • 본 연구는 5가지의 발광성 미생물을 이용하여 유해 방사선으로 알려져 있는 ${\gamma}-rays$가 여러가지 cellular stresses 중, 특히 유전자 손상과 생물막 손상을 유발하였는데, 이들의 손상 정도가 총 방사선량과 상관관계가 있음을 발생하는 bioluminescence 로써 확인하였다. 뿐만 아니라, 선량률의 변화를 통하여 방사선으로 인한 유전자 손상 및 일반적인 독성 효과가 큰 영향을 받는 것을 확인하였는데, 선량률 증가에 따라 이들 손상정도가 증가하는 것으로 보아 선량률이 genetic 및 radioprotecion에 심각한 영향을 미치는 것을 확인하였다.

  • PDF

Identification of a Novel Human Lysophosphatidic Acid Acyltransferase, LPAAT-theta, Which Activates mTOR Pathway

  • Tang, Wenwen;Yuan, Jian;Chen, Xinya;Gu, Xiuting;Luo, Kuntian;Li, Jie;Wan, Bo;Wang, Yingli;Yu, Long
    • BMB Reports
    • /
    • 제39권5호
    • /
    • pp.626-635
    • /
    • 2006
  • Lysophosphatidic acid acyltransferase (LPAAT) is an intrinsic membrane protein that catalyzes the synthesis of phosphatidic acid (PA) from lysophosphatidic acid (LPA). It is well known that LPAAT is involved in lipid biosynthesis, while its role in tumour progression has been of emerging interest in the last few years. To date, seven members of the LPAAT gene family have been found in human. Here we report a novel LPAAT member, designated as LPAAT-theta, which was 2728 base pairs in length and contained an open reading frame (ORF) encoding 434 amino acids. The LPAAT-theta gene consisted of 12 exons and 11 introns, and mapped to chromosome 4q21.23. LPAAT-theta was ubiquitously expressed in 18 human tissues by RT-PCR analysis. Subcellular localization of LPAAT-theta-EGFP fusion protein revealed that LPAAT-theta was distributed primarily in the endoplasmic reticulum (ER) of COS-7 cells. Furthermore, we found that the overexpression of LPAAT-theta can induce mTOR-dependent p70S6K phosphorylation on Thr389 and 4EBP1 phosphorylation on Ser65 in HEK293T cells.

Isolation and Characterization of a Gene Encoding Hexokinase from Loquat (Eriobotrya japonica Lindl.)

  • Qin, Qiaoping;Zhang, Lanlan;Xu, Kai;Jiang, Li;Cheng, Longjun;Xu, Chuanmei;Cui, Yongyi
    • 원예과학기술지
    • /
    • 제30권3호
    • /
    • pp.243-249
    • /
    • 2012
  • Hexokinase is the first enzyme in the hexose assimilation pathway; it acts as a sensor for plant sugar responses, and it is also important in determining the fruit sugar levels. The full-length cDNA of a hexokinase gene was isolated from loquat through reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends, which was designated as EjHXK1. EjHXK1 is 1,839 bp long and contains an entire open reading frame encoding 497 amino acids. The predicted protein of EjHXK1 shares 72%-81% similarity with other plant hexokinases. Phylogeny analysis indicated that EjHXK1 is closely related to maize and rice hexokinases. Transient expression of the 35S: EjHXK1-GFP fusion protein was observed on the cell membrane and cytoplasm. Real-time RT-PCR indicated that EjHXK1 is expressed in loquat leaves, stems, flowers, and fruits. EjHXK1 transcripts were higher during early fruit development, but decreases before maturation, which is consistent with hexokinase enzyme activity during fruit development and conducive for hexose accumulation in mature fruits. These results imply that EjHXK1 may play important roles in the regulation of sugar flux during fruit ripening.

Plant Molecular Farming Using Oleosin Partitioning Technology in Oilseeds

  • Moloney, Maurice-M.
    • 식물조직배양학회지
    • /
    • 제24권4호
    • /
    • pp.197-201
    • /
    • 1997
  • Plant seed oil-bodies or oleosomes ate the repository of the neutral lipid stored in seeds. These organelles in many oilseeds may comprise half of the total cellular volume. Oleosomes are surrounded by a half-unit membrane of phospholipid into which are embedded proteins called oleosins. Oleosins are present at high density on the oil-body surface and after storage proteins comprise the most abundant proteins in oilseeds. Oleosins are specifically targeted and anchored to oil-bodies after co-translation on the ER. It has been shown that the amino-acid sequences responsible for this unique targeting reside primarily in the central hydrophobic tore of the oleosin polypeptide. In addition, a signal-like sequence is found near the junction of the hydrophobic domain and ann N-terminal hydrophilic / amphipathic domain. This "signal" which is uncleaved is also essential for correct targeting. Oil-bodies and their associated oleosins may be recovered by floatation centrifugation of aqueous seed extracts. This simple partitioning step results in a dramatic enrichment for oleosins in the oil-body fraction. In the light of these properties, we reasoned that it would be feasible to create fusion proteins on oil-bodies comprising oleosins and an additional valuable protein of pharmaceutical or industrial interest. It was further postulated that if these proteins were displayed on the outer surface of oil-bodies, it would be possible to release them from the purified oil-bodies using chemical or proteolytic cleavage. This could result in a simple means of recovering high-value protein from seeds at a significant (i.e. commercial) scale. This procedure has been successfully reduced to practice for a wide variety of proteins of therapeutic, industrial and food no. The utillity of the method will be discussed using a blood anticoagulant, hirudin, and industrial enzymes as key examples.

  • PDF

Suppression of the ER-Localized AAA ATPase NgCDC48 Inhibits Tobacco Growth and Development

  • Bae, Hansol;Choi, Soo Min;Yang, Seong Wook;Pai, Hyun-Sook;Kim, Woo Taek
    • Molecules and Cells
    • /
    • 제28권1호
    • /
    • pp.57-65
    • /
    • 2009
  • CDC48 is a member of the AAA ATPase superfamily. Yeast CDC48 and its mammalian homolog p97 are implicated in diverse cellular processes, including mitosis, membrane fusion, and ubiquitin-dependent protein degradation. However, the cellular functions of plant CDC48 proteins are largely unknown. In the present study, we performed virus-induced gene silencing (VIGS) screening and found that silencing of a gene encoding a tobacco CDC48 homolog, NgCDC48, resulted in severe abnormalities in leaf and shoot development in tobacco. Furthermore, transgenic tobacco plants (35S:anti-NgCDC48), in which the NgCDC48 gene was suppressed using the antisense RNA method, exhibited severely aberrant development of both vegetative and reproductive organs, resulting in arrested shoot and leaf growth and sterile flowers. Approximately 57-83% of 35S:anti-NgCDC48 plants failed to develop mature organs and died at early stage of development. Scanning electron microscopy showed that both adaxial and abaxial epidermal pavement cells in antisense transgenic leaves were significantly smaller and more numerous than those in wild type leaves. These results indicate that NgCDC48 is critically involved in cell growth and development of tobacco plants. An in vivo targeting experiment revealed that NgCDC48 resides in the endoplasmic reticulum (ER) in tobacco protoplasts. We consider the tantalizing possibility that CDC48-mediated degradation of an as-yet unidentified protein(s) in the ER might be a critical step for cell growth and expansion in tobacco leaves.

Inducible spy Transcription Acts as a Sensor for Envelope Stress of Salmonella typhimurium

  • Jeong, Seon Mi;Lee, Hwa Jeong;Park, Yoon Mee;Kim, Jin Seok;Lee, Sang Dae;Bang, Iel Soo
    • 한국축산식품학회지
    • /
    • 제37권1호
    • /
    • pp.134-138
    • /
    • 2017
  • Salmonella enterica infects a broad range of host animals, and zoonostic infection threatens both public health and the livestock and meat processing industries. Many antimicrobials have been developed to target Salmonella envelope that performs essential bacterial functions; however, there are very few analytical methods that can be used to validate the efficacy of these antimicrobials. In this study, to develop a potential biosensor for Salmonella envelope stress, we examined the transcription of the S. enterica serovar typhimurium spy gene, the ortholog of which in Escherichia coli encodes Spy (${\underline{s}}pheroplast$ ${\underline{p}}rotein$ ${\underline{y}}$). Spy is a chaperone protein expressed and localized in the periplasm of E. coli during spheroplast formation, or by exposure to protein denaturing conditions. spy expression in S. typhimurium was examined by constructing a spy-gfp transcriptional fusion. S. typhimurium spy transcription was strongly induced during spheroplast formation, and also when exposed to membrane-disrupting agents, including ethanol and the antimicrobial peptide polymyxin B. Moreover, spy induction required the activity of regulator proteins BaeR and CpxR, which are part of the major envelope stress response systems BaeS/BaeR and CpxA/CpxR, respectively. Results suggest that monitoring spy transcription may be useful to determine whether a molecule particularly cause envelope stress in Salmonella.

Knockdown of Archvillin by siRNA Inhibits Myofibril Assembly in Cultured Skeletal Myoblast

  • Lee, Yeong-Mi;Kim, Hyun-Suk;Choi, Jun-Hyuk;Choi, Jae-Kyoung;Joo, Young-Mi;Ahn, Seung-Ju;Min, Byung-In;Kim, Chong-Rak
    • 대한의생명과학회지
    • /
    • 제13권4호
    • /
    • pp.251-261
    • /
    • 2007
  • A myofiber of skeletal muscle is composed of myofibrils, sarcolemma (plasma membrane), and constameres, which anchor the myofibrils to the sarcolemma. Achvillin is a recently identified F-actin binding muscle protein, co-isolates with dystrophin and caveolin-3 in low-density sarcolemma of striated muscle, and colocalizes with dystrophin at costameres, the specialized adhesion sites in muscle. Archvillin also binds to nebulin and localizes at myofibrillar Z-discs, the lateral boundaries of the sarcomere in muscle. However other roles of archvillin on the dynamics of myofibrillogenesis remain to be defined. The goal of this study is, by using siRNA-mediated gene silencing technique, to investigate the effect of archvillin on the dynamics of myofibrillogenesis in cell culture of a mouse skeletal myogenic cell line (C2C12), where presumptive myoblasts withdraw from the cell cycle, fuse, undergo de novo myofibrillogenesis, and differentiate into mature myotubes. The roles of archvillin in the assembly and maintenance of myofibril and during the progression of myofibrillogenesis induced in skeletal myoblast following gene silencing in the cell culture were investigated. Fluorescence microscopy demonstrated that the distribution of archvillin was changed along the course of myofibril assembly with nebulin, vinculin and F-actin and then located at Z-lines with nebulin. Fluorescence microscopy demonstrated that knockdown of mouse archvillin expression led to an impaired assembly of new myofibrillar clusters and delayed fusion and myofibrillogenesis although the mouse archvillin siRNA did not affect those expressions of archvillin binding proteins, such as nebulin and F-actin. This result is corresponded with that of RT-PCR and western blots. When the perturbed archvillin was rescued by co-transfection with GFP or Red tagged human archvillin construct, the inhibited cell fusion and myotube formation was recovered. By using siRNA technique, archvillin was found to be involved in early stage of myofibrillogenesis. Therefore, the current data suggest the idea that archvillin plays critical roles on cell fusion and dynamic myofibril assembly.

  • PDF

Point Mutations in the Split PLC-γ1 PH Domain Modulate Phosphoinositide Binding

  • Kim, Sung-Kuk;Wee, Sung-Mo;Chang, Jong-Soo;Kwon, Taeg-Kyu;Min, Do-Sik;Lee, Young-Han;Suh, Pann-Ghill
    • BMB Reports
    • /
    • 제37권6호
    • /
    • pp.720-725
    • /
    • 2004
  • A number of signaling molecules contain small pleckstrin homology (PH) domains capable of binding phosphoinositides or proteins. Phospholipase C (PLC)-${\gamma}1$ has two putative PH domains, an $NH_2$-terminal (PH1) and a split PH domain ($nPH_2$ and $cPH_2$). We previously reported that the split PH domain of PLC-${\gamma}1$ binds to phosphatidylinositol 4-phosphate (PI(4)P) and phosphatidylinositol 4,5-bisphosphate (PI(4,5)$P_2$) (Chang et al., 2002). To identify the amino acid residues responsible for binding with PI(4)P and PI(4,5)$P_2$, we used site-directed mutagenesis to replace each amino acid in the variable loop-1 (VL-1) region of the PLC-${\gamma}1$ $nPH_2$ domain with alanine (a neutral amino acid). The phosphoinositide-binding affinity of these mutant molecules was analyzed by Dot-blot assay followed by ECL detection. We found that two PLC-${\gamma}1$ nPH2 domain mutants, P500A and H503A, showed reduced affinities for phosphoinositide binding. Furthermore, these mutant PLC-${\gamma}1$ molecules showed reduced PI(4,5)$P_2$ hydrolysis. Using green fluorescent protein (GFP) fusion protein system, we showed that both $PH_1$ and $nPH_2$ domains are responsible for membrane-targeted translocation of PLC-${\gamma}1$ upon serum stimulation. Together, our data reveal that the amino acid residues $Pro^{500}$ and $His^{503}$ are critical for binding of PLC-${\gamma}1$ to one of its substrates, PI(4,5)$P_2$ in the membrane.

Active Component of Fatsia japonica Enhances the Transduction Efficiency of Tat-SOD Fusion Protein both In Vitro and In Vivo

  • Lee, Sun-Hwa;Kim, So-Young;Kim, Dae-Won;Jang, Sang-Ho;Lim, Soon-Sung;Kwon, Hyung-Joo;Kang, Tae-Cheon;Won, Moo-Ho;Kang, Il-Jun;Lee, Kil-Soo;Park, Jin-Seu;Eum, Won-Sik;Choi, Soo-Young
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권9호
    • /
    • pp.1613-1619
    • /
    • 2008
  • It has been reported that Tat-SOD can be directly transduced into mammalian cells and skin and acts as a potential therapeutic protein in various diseases. To isolate the compound that can enhance the transduction efficiency of Tat-SOD, we screened a number of natural products. 3-O-[$\beta$-D-Glucopyranosyl(1$\rightarrow$4)-$\alpha$-L-arabinopyranosyll-hederagenin (OGAH) was identified as an active component of Fatsia japonica and is known as triterpenoid glycosides (hederagenin saponins). OGAH enhanced the transduction efficiencies of Tat-SOD into HeLa cells and mice skin. The enzymatic activities in the presence of OGAH were markedly increased in vitro and in vivo when compared with the controls. Although the mechanism is not fully understood, we suggest that OGAH, the active component of Fatsia japonica, might change the conformation of the membrane structure and it may be useful as an ingredient in anti-aging cosmetics or as a stimulator of therapeutic proteins that can be used in various disorders related to reactive oxygen species (ROS).

Yeast내에서 MEK1 융합 단백질 발현 및 Lethal Factor 활성 검증 (Expression of MEK1 Fusion Protein in Yeast for Developing Cell Based Assay System, a Major Substrate of LeTx)

  • 황혜현;김정목;최경재;박해철;한성환;정회일;구본성;박준식;윤문영
    • 미생물학회지
    • /
    • 제42권3호
    • /
    • pp.195-198
    • /
    • 2006
  • Anthrax lethal toxin은 탄저병의 치사원인이 되는 독소이며, Lethal toxin은 두 종류의 단백질 PA (Protective antigen)과 LF (lethal factor)로 구성되어 진다. PA는 세포표면의 수용체와 결합하여 LF를 세포질 안으로 이동시켜 주는 역할을 한다. LF는 금속 이온$(Zn^{2+})$ 의존적 단백질 가수분해 효소로써 MKKs[MAPK (mitogen-activated protein kinase) kinases] 집단 단백질의 아미노 말단 부분을 절단하여 대상 세포를 죽음으로 유도하는 것으로 알려져 있다. 본 연구에서는 LF에 대한 특성 분석 및 억제제 개발에 과한 연구를 위해 cell-based high-throughtput screens 개발에 선행되어야 하는 기초 자료를 마련하는데 그 목적이 있다. 이를 위하여 LF의 절단 대상이 되는 기질이 MEK1을 yeast내에서 동시 발현시켜 LF의 활성을 검증하였다. 먼저 효모(Saccharomyces cerevisiae)를 숙주로 하여 LF의 기질인 MEK1 발현 vector를 구축하였고, 구축된 발현 system을 기본을 LF 활성을 검증하고자 yeast에 형질전환하여 plasmid의 안전성 및 MEK1 유전자의 발현 및 LF에 의한 MEK1 아미노말단의 절단 부위를 확인하였다. 본 연구는 세포내 검증 system 도입의 기초적 자료를 제공하였으며, yeast내의 MEK1 발현은 탄저병의 저해제 선별 및 활성 측정 검증을 생체에서 고효율적이며, 안정적으로 할 수 있다는 가능성을 나타냈다.