• Title/Summary/Keyword: membrane-coating

Search Result 362, Processing Time 0.018 seconds

Characterization and Control of Vascellum curtisii (Berkeley)Kreisel Causing the Fairy Ring Arcs in the Golf Course in Korea (골프코스에서 페어리링의 원인이되는 Vascellum curtisii의 특징과 방계)

  • Choi, Dae-Hong;Lee, Jung-Han;Kim, Hee-Kyu
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.2
    • /
    • pp.171-178
    • /
    • 2008
  • We have found the clusters of tiny spiny puffball-like mushrooms growing gregariously in fairy ring (arcs) rimmed by a zone of darker green grass in the golf courses. Macroscopic as well as microscopic characters were examined for the morphology of fruiting body. Exoperidium is thin and densely spiny with minute fibrillae at early stage. The connivent spines were soft and quite persistent. In age, the fibrillae scrumble away with a powdery coating, which leaves white endoperidium becoming pale brown. It's interior was white and fleshy at first, but turns into an olive-colored dust as the gleba, the spore-producing tissue, develops to maturity and loaded with olive-brown spore mass. Then, distinct apical pore developed on the endoperidium. Rudimentary subgleba(sterile base) was narrow, chambered, delineated from the gleba by a membrane in young material. These characters suggested this fungus is a Vascellum, a member of the family Lycoperdaceae. The shapes of the spores were globose, echinulate, $3{\sim}3.5{\mu}m$ in diameter, thick-walled, and olive brown. Capillitial threads were $8-9{\mu}m$ wide, mostly colorless in KOH solution and thin-walled, which designated as "paracapillitium". This is an another character that distinguishes this mushroom from Lycoperdon spp. The spines developed on exoperidium were characteristically connivent; their apices joined together in a point, leaving a space below, which gives the appearance of vault to each group of usually 5 to 6 fibrillae. Based on the above characters, this fungus is identified as Vascellum curtisii (Berkeley). The characters distinguishable this from Lycoperdon pulcherrimum, and Vascellum pretense are discussed in detail. Control trial was also attempted. Strong vertical raking(SVR) followed by applying 500x detergent solution (Spark, Aekyung Co. Seoul) resulted in excellent control over any other treatments. In this plot, fruiting body was not developed throughout the end of mushroom growing season.

Development of Immediate Face Lifting Technology for Reducing Wrinkles by Using Film-Forming Agent (피막 형성제를 이용한 즉각 리프팅 기술 개발)

  • Jun, Ji hyun;Ko, Eun ah;Han, Sang Gun;Kang, Hakhee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.3
    • /
    • pp.211-218
    • /
    • 2018
  • Instant face lifting cosmetics contain various film forming agents for stretching the wrinkles on the skin surface. But, most of the film-forming polymers have sticky feels. And they are easily scrubbed out when skin is rubbed on. In this study, we focused on the influence of sodium silicate that has rapid film forming effect on skin surface and immediate wrinkle reducing effect. Sodium silicate, also known as water glass or soluble glass, is a compound containing sodium oxide and silica. Sodium silicate is a white powder that is readily soluble in water, producing an alkaline solution. Sodium silicate is stable in neutral and alkaline solutions. The sodium silicate solution hardens by drying in air and rapidly forms a thin film. When the solution is applied to the skin, the fine membrane coating is formed by water evaporation and ionic bond re-formation. It also makes the strong siloxane (Si-O) bonding on the skin surface. When these fixation properties are applied to cosmetics, they can give remarkable skin tightening effect. The sodium silicate solution can provide the lifting effect by forming a film on skin at a proper concentration. But, skin irritation may be caused with too high concentration of sodium silicate. We studied a desirable range of the sodium silicate concentration and combination with other fixatives for skin care formulation that has no sticky feels and no scrubbing out phenomenon. Immediate lifting gel was developed by using sodium silicate and various thickening systems. Among of the various thickeners, aluminum magnesium silicate showed the best compatibility with sodium silicate for rapid lifting effect. This instant physical lifting gel was confirmed as a low stimulating formula by skin clinical test.