• Title/Summary/Keyword: membrane-coating

Search Result 362, Processing Time 0.038 seconds

Hydrophilic Modification of Polypropylene Hollow Fiber Membrane by Dip Coating, UV Irradiation and Plasma Treatment

  • Kim Hyun-Il;Kim Jin Ho;Kim Sung Soo
    • Korean Membrane Journal
    • /
    • v.7 no.1
    • /
    • pp.19-27
    • /
    • 2005
  • PP hollow fiber membrane was hydrophilized by EVOH dip coating followed by low temperature plasma treatment and UV irradiation. EVOH coating attained high water flux without any prewetting but its stability did not guaranteed at high water permeation rate. At high water permeation rate, water flux declined gradually due to swelling and delamination of the EVOH coating layer causing pore blocking effect. However, plasma treatment reduces the swelling, which suppress delamination of the EVOH coating layer from PP support result in relieving the flux decline. Also, UV irradiation helped the crosslinking of the EVOH coating layer to enhance the performance at low water permeation rate. FT-IR and ESCA analyses reveal that EVOH dip coating performed homogeneously through not only membrane surface but also matrix. Thermogram of EVOH film modified plasma treatment and W irradiation show that crosslinking density of EVOH layer increased. Chemical modification by plasma treatment and UV irradiation stabilized the hydrophilic coating layer to increase the critical flux of the submerged membrane.

Preparation of Alumino-silicate Membrane and Its Application to a Gas Separation

  • 김태환
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2002.04a
    • /
    • pp.23-46
    • /
    • 2002
  • The cryogenic, pressure swing adsorption and membrane methods have been used to separate air into nitrogen and oxygen. The air separation membrane is made of the polymers, of which manufacturing process is complicate and it causes a little high production cost. Polymer membrane has temperature limit in usage and low durability even at moderate temperature. Therefore, inorganic membranes have been studied for years. As formation of unit alumino-silicate membrane, unit cells of membrane were made with a few coating methods. In this study the dipping of substrate into sols, application of vacuum to the opposite side of substrate with coating and rotating of the substrate in the sols were found as good coating memthods to make a uniform coating and to control the thickness of membrane. The membrane coats were examined by SEM and XRD. The sample ESZl-1 was compared with those of samples that prepared by another method. The present developed coating methods could be applied to the various types of zeolite membrane formation, that is A- X-, Y- ZSM- and MCM-types of membranes. Also these membrane forming methods could be applied to formation of catalyst absorbed zeolite membrane, of which zeolite absorb the catalytic metals. The product obtained from these coating methods could be applied to the industrial gas and liquid phase catalytic reaction and separation processes.

  • PDF

Preparation and Characterization of New Immunoprotecting Membrane Coated with Amphiphilic Multiblock Copolymer

  • Kang, Han-Chang;Bae, You-Han
    • Macromolecular Research
    • /
    • v.10 no.2
    • /
    • pp.67-74
    • /
    • 2002
  • New immunoprotecting membranes were prepared by spin coating the amphiphilic random multiblock copolymers of poly(ethylene glycol) (PEG) and poly(tetramethylene ether glycol) (PTMEG) or poly(dimethyl siloxane) (PDMS) on porous Durapore(R) membrane. The copolymer coating was intended to make a biocompatible, immunoprotecting diffusional barrier and the supporting porous substrate was for mechanical stability and processability. By filling Durapore(R) membrane pores with water, the penetration of coating solution into the pores was minimized during the spin coating process. A single coating process produced a completely covered thin surface layer (~1 ${\mu}{\textrm}{m}$ in thickness) on the porous substrate membrane. The permselectivity of the coated layer was influenced by PEG block length, polymer composition, and thickness of the coating layer. A composite membrane with the coating layer prepared with PEG 2 K/PTMEG 2 K block copolymer showed that its molecular weight cut-of fat any 40 based on dextran was close to the molecular size of IgG (Mw = 150 kDa). However, IgG permeation was detected from protein permeation test, while glucose oxidase (Mw = 186 kDa) was not permeable through the coated membrane.

Preparation of high-performance nanofiltration membrane with antioxidant properties

  • Yu, Feiyue;Zhang, Qinglei;Pei, Zhiqiang;Li, Xi;Yang, Xuexuan;Lu, Yanbin
    • Membrane and Water Treatment
    • /
    • v.13 no.4
    • /
    • pp.191-199
    • /
    • 2022
  • In industrial production, the development of traditional polyamide nanofiltration (NF) membrane was limited due to its poor oxidation resistance, complex preparation process and high cost. In this study, a composite NF membrane with high flux, high separation performance, high oxidation resistance and simple process preparation was prepared by the method of dilute solution dip coating. And the sulfonated polysulfone was used for dip coating. The results indicated that the concentration of glycerin, the pore size of the based membrane, the composition of the coating solution, and the post-treatment process had important effects on the structure and performance of the composite NF membrane. The composite NF membrane prepared without glycerol protecting based membrane had a low flux, when the concentration of glycerin increased from 5% to 15%, the pure water flux of the composite NF membrane increased from 46.4 LMH to 108.2 LMH, and the salt rejection rate did not change much. By optimizing the coating system, the rejection rate of Na2SO4 and PEG1000 was higher than 90%, the pure water flux was higher than 40 LMH (60psi), and it can withstand 20,000 ppm.h NaClO solution cleaning. When the post treatment processes was adjusted, the salt rejection rate of NaCl solution (250 ppm) reached 45.5%, and the flux reached 62.2 LMH.

Composite Membrane Preparation for Low Pressure Using Salting-Out Method and Its Application to Nanofiltration Process (염석법에 의한 저압용 역삼투막 제조 및 NF로의 적용)

  • Jeon, Yi Seul;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.440-446
    • /
    • 2015
  • Nanofiltration composite membranes were prepared through the ion exchange polymers coating onto the porous microfiltration polyethylene (PE) membrane surfaces the salting-out and phase separated and pressurization (PSP) methods. The existence of coating on the surfaces was confirmed by the scanning electronic microscopy. The resulting membranes were characterized under the various conditions, such as the coating material, coating time, ionic strength etc., in terms of flux and rejection for NaCl 100 ppm solution. Under the same coating conditions of 10,000 ppm coating solution concentration and 3 atm coating pressure for both the coating materials of PEI and PSSA_MA, the flux 91.2 LMH and rejection 64.6% were obtained for PEI whereas 122.7 LMH and 38.1% were observed for PSSA_MA. From this study, it may be concluded that the composite membrane preparation is possible.

Deterioration Diagnosis of Surface and Coating Layer for Maintenance Managements of the Membrane Structure (막구조 건축물의 유지관리를 위한 표면 및 코팅층의 열화 진단)

  • Kang, Joo-Won;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.1
    • /
    • pp.97-104
    • /
    • 2011
  • This paper contains of descriptions of deterioration diagnosis of the surface and a coating layer for maintenance managements of large spatial structures with membrane structure. Membrane is a roofing material of the structures that its performance of durability including its performance of chemical resistance and corrosive resistance is considered to be highly important. In general, the items of diagnosis for maintenance managements such as membrane extensively include the diagnosis of deterioration of the membrane surface, of a coating layer of membrane, the diagnosis of deterioration between a coating layer and fiber, of overall surface of membrane, of the class of ropes, of reinforced belts, and of the cover of rubber. The object of this study that needs maintenance managements of the membrane with PVC and FIFE which are commonly used and shows the diagnosis results of deterioration of the surface and a coating layer.

Preparation and Performance of Composite Membrane Prepared by Layer-by-Layer Coating Method (Layer-by-Layer 코팅법을 적용한 복합막 제조와 투과성능 평가)

  • Jeon, Yi Seul;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.25 no.6
    • /
    • pp.538-546
    • /
    • 2015
  • In this study, composite membrane is prepared by Layer-by-Layer method using hydrophobic polymer as a coating material on the polysulfone support. The existence of coating layer on the surface and cross section was confirmed by the scanning electronic microscopy. The flux and rejection of the resulting membranes were characterized using 100 ppm NaCl feed solution. PVSA, PEI, PAA, PSSA, PSSA_MA were used as a coating polymer in this study. The composite membrane prepared by using 8,000 ppm PAA solution (Ion strength = 0.35, Coating time = 3 min) and 10,000 ppm PEI solution (Coating time = 4 min). As a result, PAA-PEI composite membrane showed flux of 101 LMH and salt rejection of 66.7%. The composite membrane showed the comparable performance as good as NE 4040-70 (Flux = 30 LMH, Rejection = 40~70%) model produced by Toray Chemical co.

Fabrication and Properties Analysis of MEA for PEMFC (고분자전해질 연료전지용 MEA 제조 및 특성평가)

  • Cho Y.H.;Cho Y.H.;Park I.S.;Sung Y.E.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.230-234
    • /
    • 2005
  • Fabrication of MEA is important factor for proton exchange membrane fuel cell (PEMFC). MEA of PEMFC with hot pressing and direct coating method were prepared, and performances were evaluated and compared each other. The effect of MEA preparation methods, hot pressing methods and direct coating methods, on the cell performance was analyzed by impedance spectroscopy and SEM. The performance of PEMFC with direct coating method was better than with hot pressing method because membrane internal resistance and membrane-interfacial resistance were reduced by elimination of hot pressing process in MEA fabrication. In addition the micro structure of MEA with direct coating method reveals uniform interface between membrane and catalyst layer.

  • PDF

A Study on the Physical Properties Change of Waterproofing Membrane Coating by Application of Modified Polymer Primer (개질 폴리머계 프라이머 적용에 따른 도막 방수재의 물리적 특성 변화 연구)

  • Lee, Jung-Hun;Cho, Hong-Bum;Jeon, Hyun-Soo;Park, Ki-Hong;Kim, Jin-Sik;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.191-192
    • /
    • 2022
  • It was intended to evaluate whether the primer affects the physical performance of the waterproofing membrane coating. For this end, the physical performance change of the urethane waterproofing membrane coating was evaluated for urethane-based and polymer-based primers. As a result of the evaluation, it was confirmed that the type of primer may affect the physical performance of the waterproofing membrane coating. In particular, a difference in performance of more than 100% was confirmed in tensile strength and percentage elongation. Through these results, it was confirmed that the selection of the primer was important. In the future, follow-up studies on various waterproofing membrane coatings are needed.

  • PDF

The effect of MEA fabrication procedure on PEMFC performance (고분자전해질 연료전지의 MEA 제조방법에 따른 성능비교)

  • Cho Yong-Hun;Cho Yoon-Hwan;Park In-Su;Choi Baeckbom;Jung Dae-Sik;Sung Yung-Eun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.291-295
    • /
    • 2005
  • The PEMFC behavior is quite complex and is influenced by several factors, including composition and structure of electrodes and membrane type. Fabrication of MFA is important factor for proton exchange membrane fuel cell. MFA of PEMFC with hot pressing and direct coating method were prepared, and performances were evaluated and compared each other. The effect of MEA preparation methods, hot pressing methods and direct coating methods, on the cell performance was analyzed by impedance spectroscopy and SEM. The performance of PEMFC wi th direct coat ing method was better than wi th hot pressing method because membrane internal resistance and membrane-:-interfacial resistance were reduced by elimination of hot pressing process in MEA fabrication. In addition the micro structure of MEA with direct coating method reveals uniform interface between membrane and catalyst layer.

  • PDF