• Title/Summary/Keyword: membrane transporter

Search Result 127, Processing Time 0.027 seconds

A Study on the Mechanism of Insulin Sensitivity to Glucose Transport System: Distribution of Subcellular Fractions and Cytochalasin B Binding Proteins (인슐린의 포도당 이동 촉진 기전에 관한 연구 -세포내부 미세구조와 Cytochalasin B 결합단백질의 분포-)

  • Hah, Jong-Sik
    • The Korean Journal of Physiology
    • /
    • v.24 no.2
    • /
    • pp.331-344
    • /
    • 1990
  • What makes glucose transport function sensitive to insulin in one cell type such as adipocyte, and insensitive in another such as liver cells is unresolved question at this time. Recently it is known that insulin stimulates glucose transport in adipocytes largely by redistributing transporter from the storage pool that is included in a low density microsomal fraction to plasma membrane. Therefore, insulin sensitivity may depend upon the relative distribution of gluscose transporters between the plasma membrane and in an intracellular storage compartment. In hepatocytes, the subcellular distribution of glucose transporter is less well documented. It is thus possible that the apparent insensitivity of the hepatocyte system could be either due to lack of the constitutively maintained, intracellular storage pool of glucose transporter or lack of insulin-mediated transporter translocation mechanism in this cell. In this study, I examined if any intracellular glucose transporter pool exists in hepatocytes and this pool is affected by insulin. The results obtained summarized as followings: 1) Distribution of subcellular fractions of hepatocyte showed that there are $24.9{\pm}1.3%$ of plasma membrane, $36.9{\pm}1.7%$ of nucleus-mitochondria enriched fraction, $23.5{\pm}1.2%$ of lysosomal fraction, $9.6{\pm}1.0%$ of high density microsomal fraction and $4.9{\pm}0.5%$ of low density microsomal fraction. 2) In adipocyte, there were $29.9{\pm}2.6%$ of plasma membrane, $19.4{\pm}1.9%$ of nucleus-mitochondria enriched fraction, $26.7{\pm}1.8%$ of high density microsomal fraction and $23.9{\pm}2.1%$ of low density microsomal fraction. 3) Surface labelling of sodium borohydride revealed that plasma membrane contaminated to lysosomal fraction by $26.8{\pm}2.8%$, high density microsomal fraction by $8.3{\pm}1.3%$ and low density microsomal fraction by $1.7{\pm}0.4%$ respectively. 4) Cytochalasin B bound to all of subcellular fractions with a Kd of $1.0{\times}10^{-6}M$. 5) Photolabelling of cytochalasin B to subcellular fractions occurred on 45 K dalton protein band, a putative glucose transporter and D-glucose inhibited the photolabelling. 6) Insulin didn't affect on the distribution of subcellular fractions and translocation of intracellular glucose transporters of hepatocytes. 7) HEGT reconstituted into hepatocytes was largely associated with plasma membrane and very little was found in low density microsomal fraction which equals to the native glucose transporter distribution. Insulin didn't affect on the distribution of exogeneous glucose transporter in hepatocytes. From the above results it is concluded that insulin insensitivity of hepatocyte may due to lack of intracellular storage pool of glucose transporter and thus intracellular storage pool of glucose transporter is an essential feature of the insulin action.

  • PDF

Biochemical Characterization of an ABC Transporter Gene Involved in Cephabacin Biosynthesis in Lysobacter lactamgenus

  • Park, Myoung-Jin;Yon, Jei-Oh;Lim, Si-Kyu;Ryu, Dewey D.-Y.;Nam, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.635-638
    • /
    • 2004
  • An ATP-binding-cassette (ABC) transporter gene in the cephabacin biosynthetic gene cluster of Lysobacter lactamgenus was characterized. The amplified orf10 (cpbJ) gene was subcloned into pET-28a(+) vector and expressed in E. coli BL21(DE3) strain by 0.5 mM IPTG at $30^{\circ}C$. The membrane fraction of recombinant E. coli cells was separated by ultracentrifugation, and solubilized using 2.5% octyl-$\beta$-D-glucoside. Using the solubilized membrane fraction, the artificial proteoliposomes were reconstituted and analyzed for the biological activity of CpbJ protein. Upon measuring ATPase activity, the proteoliposome made from recombinant E. coli membrane proteins showed slightly higher activity than that from host E. coli membrane proteins. In the measurement of membrane transport activity, the reconstituted proteoliposome of recombinant E. coli membrane proteins exhibited higher activity when both substrates of cephalosporin C and L-Ala-L-Ser were applied, compared to the case of cephalosporin C or L-Ala-L-Ser only. It implies that the CpbJ protein is an ABC transporter secreting cephabacin antibiotics synthesized in cytoplasm.

Molecular Association of Glucose Transporter in the Plasma Membrane of Rat Adipocyte

  • Hah, Jong-Sik
    • The Korean Journal of Physiology
    • /
    • v.25 no.2
    • /
    • pp.115-123
    • /
    • 1991
  • Molecular association of glucose transporters with the other proteins in the plasma membrane was assessed by gel electrophoresis and immunoblot techniques. Approximately $31.5{\pm}5.1%$ of GLUT-4, $64.8{\pm}2.7%$ of clathrin, 48.7% of total protein in the plasma membrane (PM) were found insoluble upon extraction with 1% Tx-100. Sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed that the Tx-100 insoluble PM fraction contained about 4 major polypeptides with apparent molecular weight of above 200, 100-120, 80 and 30-35 KDa that were readily removed upon wash with a high pH buffer which is known to remove clathrin and 0.5 M Tris-buffer which is known to remove assembly proteins (AP). Immunoblotting of GLUT4 and clathrin against specific antibodies showed that GLUT-4 and clathrin were co-solubilized up to 84.6% and 82.7% respectively by wash with a high pH buffer and 1% Tx-100. When the membrane was pre-washed with a high pH buffer and 0.5 M Tris solution, GLUT4 and clathrin were not solubilized further suggesting that GLUT4 molecules are in molecular association with clathrin, AP and/or other extrinsic membrane proteins in plasma membrane and the formation of clathrin-coated structures might be involved in insulin stimulated glucose transporter translocation mechanism.

  • PDF

Purification of the Vacuolar Arginine Transporter from Neurospora crassa (Neurospora crassa로부터 arginine transporter의 순수분리)

  • ;Weiss, R. L.
    • Korean Journal of Microbiology
    • /
    • v.27 no.2
    • /
    • pp.117-123
    • /
    • 1989
  • Radioactive N-$\alpha$-p-nitrobenzoxycarbonyl (NBZ)-L-[2,$3-^{3}$H] arginyl diazomethane was used as an affinity label for the vacuolar arginine transporter in Neurospora crassa. Vacuolar matrix proteins were removed by fracturing the membranes with freeze-thaw method in dry ice/ethanol bath. Vacuolar membrane proteins were then wasged with 500mM NaCl to remove ionically bound derivatives and peripheral membrane proteins from vacuolar membranes. After dissolved in 1% Titon X-100, dissolved vacuolar memvrane proteins were separated with molecular sieve column chromatography, anion and cation exchange chromatographies. The arginine transporter was purified giving the purification factor of 1136.

  • PDF

Proteomic Analysis of Fructophilic Properties of Osmotolerant Candida magnoliae

  • Yu, Ji-Hee;Lee, Dae-Hee;Park, Yong-Cheol;Lee, Mi-Gi;Kim, Dae-Ok;Ryu, Yeon-Woo;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.248-254
    • /
    • 2008
  • Candida magnoliae, an osmotolerant and erythritol producing yeast, prefers D-fructose to D-glucose as carbon sources. For the investigation of the fructophilic characteristics with respect to sugar transportation, a sequential extraction method using various detergents and ultracentrifugation was developed to isolate cellular membrane proteins in C. magnoliae. Immunoblot analysis with the Pma1 antibody and two-dimensional electrophoresis analysis coupled with MS showed that the fraction II was enriched with membrane proteins. Eighteen proteins out of 36 spots were identified as membrane or membrane-associated proteins involved in sugar uptake, stress response, carbon metabolism, and so on. Among them, three proteins were significantly upregulated under the fructose supplying conditions. The hexose transporter was highly homologous to Ght6p in Schizosaccharomyces pombe, which was known as a predominant transporter for the fructose uptake of S. pombe because it exhibited higher affinity to D-fructose than D-glucose. The physicochemical properties of the ATP-binding cassette transporter and inorganic transporter explained their direct or indirect associations with the fructophilic behavior of C. magnoliae. The identification and characterization of membrane proteins involved in sugar uptake might contribute to the elucidation of the selective utilization of fructose to glucose by C. magnoliae at a molecular level.

Immunocytochemical Study on the Translocation Mechanism of Glucose Transporters by Insulin

  • Hah, Jong-Sik;Kim, Ku-Ja
    • The Korean Journal of Physiology
    • /
    • v.27 no.2
    • /
    • pp.123-138
    • /
    • 1993
  • The mechanism of insulin action to increase glucose transport is attributed to glucose transporter translocation from intracellular storage pools to the plasma membrane in insulin-sensitive cells. The present study was designed to visualize the redistribution of the glucose transporter by means of an immunogold labelling method. Our data clearly show that glucose transporter molecules were visible by this method. According to the method this distribution of glucose transporters between cell surface and intracellular pool was different in adipocytes. The glucose transporter molecules were randomly distributed at the cell surface whereas the molecules at LDM were farmed as clusters. By insulin treatment the number of homogeneous random particles increased at the cell surface whereas the cluster forms decreased at the intracellular storage pools. It suggests that the active molecules needed to be evenly distributed far effective function and that the inactive molecules in storage pools gathered and termed clusters until being transferred to the plasma membrane.

  • PDF

Effects of Insulin and IGFS on Growth and Functional Differentiation in Primary Cultured Rabbit Kidney Proximal Tubule Cells -Growth and membrane transport-

  • Han, Ho-Jae;Park, Kwon-Moo
    • The Korean Journal of Physiology
    • /
    • v.29 no.2
    • /
    • pp.191-202
    • /
    • 1995
  • The purpose of this study was to compare effects of insulin and IGFs on growth, apical membrane enzyme activities and membrane transport systems of primary cultured rabbit kidney proximal tubule cells. Results were as follows: 1. Insulin and IGF-I produced significant growth stimulatory effects at $5{\times}10^{-10}M.\;IGF-II(5×10^{-10}\;M)$ did not stimulate significant cell growth. 2. Insulin stimulated the phosphorylation of a 97 KD protein. It was difficult to determine whether this band represents insulin and/or the IGF-I receptor. 3. The activities of apical membrane enzymes (alkaline phosphatase, leucine aminopeptidase, and ${\gamma}-glutamyl \;transpeptidase)$ were observed to be diminished after the cells were placed in the culture environment. 4. The uptake of ${\alpha}-MG,$ Pi and Na was significantly increased in cells incubated with insulin or IGF-I, IGF-II had no effect on the uptake of these substrates. 5. Na-pump activity, as assayed by Rb uptake, was significantly increased in cells treated with insulin or IGFs. In conclusion, insulin and IGF-I exert stimulatory effects on growth and membrane transporter(glucose, Na, Pi, and Na-pump) activities in primary cultured rabbit kidney proximal tubule cells. IGF-II had no effect on cell growth and membrane transporter(glucose, Na and Pi) activities.

  • PDF

Membrane Transporter Genes in Cephabacin Biosynthetic Gene Cluster of Lysobacter lactamgenus

  • Nam, Doo-Hyun;Lim, Si-Kyu;Chung, Min-Ho;Lee, Eung-Seok;Sohn, Young-Sun;Dewey, D.Y. Ryu
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.1
    • /
    • pp.153-159
    • /
    • 2001
  • In order to clone the peptide synthetase gene form Lysobacter lactamgenus IFO 14,288, the gene fragments were amplified using primers for the adenylation domain and the thionylation domain of the peptide synthetase genes in other organisms by polymerase chain reaction (PCR). The resulting 0.5-kb fragment was cloned in a pGEM-T vector, and the nucleotide sequences were determined. Six different PCR products were obtained; three were identified to be a part of L-$\alpha$-aminoadipyl-L-cysteinyl-D-valine (ACV) synthetase and three to be other peptide synthetases. Using each of the two different classes of PCR products as mixed probes, a cosmid library of L. lactamgenus chromosomal DNA constructed in a pHC79 vector was screened by an in situ hybridization procedure, and one positive clone was selected which was bound by peptide synthetase gene fragments as well as ACV synthetase gene fragments. The partial sequence analysis formt he obtained pPTS-5 cosmid showed th presence of more than two open reading frames. These were for two putative membrane transporters, which were homologous with several integral membrane proteins including the ABC transporter ATP-binding protein of E. coli (YbjZ) and the metal ion uptake protein of Bacillus subtilis (YvrN). A 45% homology was also found between the two transporter proteins at the carboxy terminus. Through a hydropathy analysis and transmembrane analysis. 4-5 transmembrane domains were found in these two proteins. When the genes were expressed in Escherichia coli, the gene products inhibited the hose cell growth, probably due to the disturbance of the membrane transport system.

  • PDF

Toxicological Relevance of Transporters

  • Maeng, Han-Joo;Chung, Suk-Jae
    • Toxicological Research
    • /
    • v.23 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • Transporters are membrane proteins that mediate the transfer of substrate across the cellular membrane. In this overview, the characteristics and the toxicological relevance were discussed for various types of transporters. For drug transporters, the overview focused on ATP-binding cassette transporters and solute carrier family 21A/22A member transporters. Except for OCTN transporters and OATP transporters, drug transporters tend to have broad substrate specificity, suggesting drug-drug interaction at the level of transport processes (e.g., interaction between methotrexate and non-steroidal anti-inflammatory agents) is likely. For metal transporters, transporters for zinc, copper and multiple metals were discussed in this overview. These metal transporters have comparatively narrow substrate specificity, except for multiple metal transporters, suggesting that inter-substrate interaction at the level of transport is less likely. In contrast, the expressions of the transporters are often regulated by their substrates, suggesting cellular adaptation mechanism exists for these transporters. The drug-drug interactions in drug transporters and the cellular adaptation mechanisms for metal transporters are likely to lead to alterations in pharmacokinetics and cellular metal homeostasis, which may be linked to the development of toxicity. Therefore, the transporter-mediated alterations may have toxicological relevance.

Plasma Membrane Transporters for Lead and Cadmium

  • Bressler Joseph P.;Olivi Luisa;Cheong Jae Hoon;Kim Yongbae;Bannon Desmond
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2004.11a
    • /
    • pp.50-61
    • /
    • 2004
  • Lead and cadmium are potent environmental toxicants that affect populations living in Europe, Americas, and Asia. Identifying transporters for lead and cadmium could potentially 1 help us better understand possible risk factors. The iron transporter divalent metal transporter 1(DMT1) mediates intestinal transport of cadmium, and lead in yeast and fibroblasts overexpressing DMT1. In human intestinal cells knocking down expression of DMT1 attenuated uptake of cadmium and iron but not lead. A possible explanation is the expression of a second transporter for lead in intestine. In astrocytes, however, DMT1 appears to transport lead in an extracellular buffer at pH value. At neutral pH, transport was not mediated by DMT1 but rather by a transporter that is stimulated by bicarbonate and inhibited by 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonic acid. The identity of this lead transporter is under study.

  • PDF