• Title/Summary/Keyword: membrane separation

Search Result 1,439, Processing Time 0.021 seconds

Separation of $H_2$/$N_2$ Gas Mixture by PTMSP/PDMS-PEI Composite Membrane (PTMSP/PDMS-PEI 복합막에 의한 수소/질소 혼합기체 분리)

  • Kang Tae-Bum;Hong Se-Lyung
    • Membrane Journal
    • /
    • v.14 no.4
    • /
    • pp.298-303
    • /
    • 2004
  • PTMSP/PDMS-PEI composite membrane was prepared by solution casting method. To investigate the characteristics of this membrane, the analytical methods such as FT-IR, $^1$H-NMR, DSC, TGA, GPC, and SEM have been utilized. The number-average((equation omitted)) and weight-average((equation omitted)) molecular weight of PTMSP/PDMS copolymer were 501,516 and 675,560 respectively. The separation of the gas mixture($H_2$/$N_2$) through the composite membrane was studied as a function of pressure. The separation factor($\alpha$, $\beta$, (equation omitted)) of the composite membrane used in this work increased as the pressure of permeation cell increased. The real separation factor($\alpha$), head separation factor($\beta$), and tail separation factor ((equation omitted)) of PTMSP/PDMS-PEI composite membrane were 21.50, 49.14 and 1.84 respectively at $\Delta$P 345.55 kPa and $25^{\circ}C$.

Coagulation-membrane separation hybrid treatment of secondary treated effluent for high efficiency phosphorus removal (하수 2차처리 방류수의 총인 고효율 처리를 위한 응집·막분리 혼성처리)

  • Choi, Wookjin;Lee, Byungha;Park, Joonhong;Cha, Hoyoung;Lee, Byungchan;Song, Kyungguen
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.1
    • /
    • pp.47-53
    • /
    • 2018
  • This study investigated phosphorus removal from secondary treated effluent using coagulation-membrane separation hybrid treatment to satisfy strict regulation in wastewater treatment. The membrane separation process was used to remove suspended phosphorus particles after coagulation/settlement. Membrane separation with $0.2{\mu}m$ pore size of micro filtration membrane could reduce phosphorus concentration to 0.02 mg P/L after coagulation with 1 mg Al/L dose of polyaluminum chloride (PACl). Regardless of coagulant, the residual concentration of phosphorus decreased as the dose increased from 1.5 to 3.5 mg Al/L, while the target concentration of 0.05 mg P/L or less was achieved at 2.5 mg Al/L for the aluminum sulfate (Alum) and 3.5 mg Al/L for PACl. Moreover, alum showed better membrane flux as make bigger particles than PACl. Alum showed a 40% of flux decrease at 2.5 mg Al/L dose, while PACl indicated a 50% decrease of membrane flux even with a higher dose of 3.5 mg Al/L. Thus, alum was more effective coagulant than PACl considering phosphorus removal and membrane flux as well as its dose. Consequently, the coagulation-membrane separation hybrid treatment could be mitigate regulation on phosphorus removal as unsettleable phosphorus particles were effectively removed by membrane after coagulation.

Recent Progress in Patterned Membranes for Membrane-Based Separation Process (분리공정을 위한 패턴화 멤브레인 최근 연구 동향)

  • Aung, Hein Htet;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.3
    • /
    • pp.170-183
    • /
    • 2021
  • Fouling has continued to be a problem that hinders the effectiveness of membrane properties. To solve this problem of reducing fouling effects on membrane surface properties, different and innovative types of membrane patterning has been proposed. This article reviews on the progress of patterned membranes and their separation process concerning the fouling effects of membranes. The types of separation processes that utilize the maximum effectiveness of the patterned membranes include nanofiltration (NF), reverse osmosis (RO), microfiltration (MF), ultrafiltration (UF), and pervaporation (PV). Using these separation processes have shown and prove to have a major effect on reducing fouling effects, and in addition, they also add beneficial properties to the patterned membranes. Each patterned membrane and their separation processes gave notable results in threshold towards flux, salt rejections, hydrophilicity and much more, but there are also some unsolved cases to be pointed out. In this review, the effects of patterned membrane for separation processes will be discussed.

Recovery of Intracel lular Biomaterials from the Suspension of Lysed or Disintegrated Yeast by Membranes

  • Matsumoto, Kanji
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.10a
    • /
    • pp.1-6
    • /
    • 1994
  • Many useful biomaterials like enzymes are contained in yeast cells. However, the release of these intracellular biomateriais from the cells is required to recover them with hot water, solvent or various cell breakage methods of mechanical or non mechanical ones. The cell lysis or breakage of yeast is usually made by solvent like ethyl acetate and mechanical disintrgration with high pressure homogenizer or agitating beads mill. The separation of cell debris (i.e. solid liquid separation) is done by centrifuge or membrane depending on the recovery conditions. The features of both separation methods are shown in Tables 1 and 2. As it is often difficult to obtain a clear supernatant by centrifuge from the suspension containing cell debris, the membrane separation is also often used to gel a clear supernatant. In this report we introduce the several applications of membrane separation to separate the cell debris of yeast disintegrated chemically or mechanically and to recover the intracellular biomaterials.

  • PDF

Membrane Separations and Energy Savings

  • Hwang, Sun-Tak
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.33-43
    • /
    • 1994
  • It is the purpose of this paper to review the recent developments and future trends in various membrane processes, which will result in energy savings. Historically, there was a long period of academic curiosity in membrane research covering from gas separation to reverse osmosis. With advent of asymmetric membrane technology, many membrane processes proved to be energy efficient than the conventional separation methods. Thus, membrane technology has gained wide acceptance from many sectors of industry. The commercial sale of membranes is still modest compared to the major technologies, but it is one of the fastest growing industries. Recently the U.S.Department of Energy conducted a study (1) to evaluate and prioritize research needs in the membrane separation industry in order to foster and better support the deveolpment of energy-efficient new technologies. The National Science Foundation (U.S.A.) did also do a similar investigation. Both agencies have arrived neary at the same conclusion, that is, membrane separations can offer many new and alternative methods of separations that are more energy efficient than existing processes. This paper is largely based on these findings.

  • PDF

Improvement of Separation of Polystyrene Particles with PAN Membranes in Hollow Fiber Flow Field-Flow Fractionation

  • Shin, Se-Jong;Chung, Hyun-Joo;Min, Byoung-Ryul;Park, Jin-Won;An, Ik-Sung;Lee, Kang-Taek
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1333-1338
    • /
    • 2003
  • Hollow Fiber flow field-flow fractionation (HF-FlFFF) has been tested in polyacrylonitrile (PAN) membrane channel in order to compare it with polysulfone (PSf) membrane channel. It has been experimentally shown that the separation time of 0.05-0.304 ${mu}m$ polystyrene latex (PSL) standards in PAN membrane channel is shorter than that in PSf channel by approximately 65%. The optimized separation condition in PAN membrane is ${\dot V}_{out}/{\dot V}_{rad}=1.4/0.12\;mL/min$, which is equal to the condition in PSf membrane channel. In addition both the resolution ($R_s$) and plate height (H) in PAN membrane channel are better than that in PSf membrane channel. The membrane radius was obtained by back calculation with retention time. It shows that the PSf membrane is expanded by swelling and pressure, but the PAN membrane doesn't expand by swelling and pressure.

Preparation of Microporous Silica Membrane from TEOS-$H_2O$ System and Separation Of $H_2$-$N_2$ Gas Mixture (TEOS-$H_2O$계로부터 다공성 실리카 막의 제조 및 수소-질소 혼합기체의 분리)

  • 강태범;이현경;이용택
    • Membrane Journal
    • /
    • v.10 no.2
    • /
    • pp.55-65
    • /
    • 2000
  • The porous silica membrane was prepared from Si(${OC}_2H_5)_4-H_2O$ system by sol-gel method. To investigate the characteristics of gels and porous silica membrane, we examined gels and porous silica membrane using TG-DTA, X-ray diffractometer, IR spectrophotometer, BET, SEM and TEM. The optimum mole ratio of Si(OC$_2$H$_{5}$)$_4$ : $H_2O$ $C_2$H$_{5}$OH for porous silica membrane was 1 : 4.5 : 4. The porous silica membrane was obtained by heat treatment of the gel above 700 $^{\circ}C$. The specific surface area of sintered gel was 3.8 $m^2$/g to 902.3 $m^2$/g at 100 $^{\circ}C$ to 1100 $^{\circ}C$ The pore size of sintered gel was in the range 20 $\AA$~ 50$\AA$. The particle size of sintered gel was 15 nm to 30 nm at 30$0^{\circ}C$ to 700$^{\circ}C$. The performance of the porous silica membrane was investigated for the separation of $H_2$/$N_2$ gas mixture. Gas separation through porous silica membrane depends upon Knudsen flow and surface flow. The veal separation factor($\alpha$) of $H_2$/$N_2$ was 5.17 at 155.15 cmHg and $25^{\circ}C$. The real separation factor($\alpha$), head separation factor($\beta$), and tail separation factor( $\bar{B}$) increased as the pressure of permeation cell Increased.sed.

  • PDF

Separation of Toluene/n-Heptane Mixture by O/W/O Type Emulsion Liquid Membrane(part 1) (O/W/O형 Emulsion 액체막에 의한 Toluene과 n-Heptane 혼합물의 분리(제1보))

  • Ju, Myung-Jong;Kim, Tae-Young;Nam, Ki-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.95-103
    • /
    • 1996
  • In the separation of toluene/n-heptane mixture by the emulsion type liquid membrane in an batch system, the effect of surfactant on the separation factor and membrane stability was studied over the surfactant concentration ranging form 0.1 to 1.5wt% at the contact time of 5 and 10 minutes. and the settling time of 5 and 10 minutes. The surfactant used was sodium lauryl sulfate. The separation factor reached its maximum value at the surfactant concentration of 0.5wt% for surfantant. It was found that the percentage of membrane breakup reached its minimum values and the separation factor showed its maximum value at the surfactant concentration of 0.5wt%. which confirmed that efficient separation could be effect when emulsion liquid membrane was stable because of low membrane breakup.

Effect of Surfactant on the Separation of Toluene/n-Heptane Mixture by O/W/O Type Emulsion Liquid Membrane (O/W/O형 에멀젼 액체막에 의한 Toluene과 n-Heptane 혼합물의 분리에 있어서 계면활성제의 영향)

  • Kim, Tae-Young;Lee, Ju-Sang;Choi, Sung-Ok;Nam, Ki-Dae;Park, Sang-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.95-103
    • /
    • 1999
  • In the separation of toluene/n-heptane mixture by the emulsion type liquid membrane in a batch system, the effect of surfactants on the separation factor and membrane stability were studied over the surfactant concentration ranging from 0.1 to 1.5 wt% at the contact time of 5 and 10 minutes and the settling time 5 and 10 minutes. The surfactants used were triethanol amine lauryl sulfate. The separation factor reached its maximum value at the surfactant concentration of 0.5 wt%. It was found that the percentage of membrane breakup reached its minium values and the separation factor showed its maximum value at the surfactant concentration of 0.5 wt%, which confirmed that efficient separation could be effect when emulsion liquid membrane were stable because of low membrane break up.