• Title/Summary/Keyword: membrane proteins

Search Result 1,006, Processing Time 0.026 seconds

Molecular Association of Glucose Transporter in the Plasma Membrane of Rat Adipocyte

  • Hah, Jong-Sik
    • The Korean Journal of Physiology
    • /
    • v.25 no.2
    • /
    • pp.115-123
    • /
    • 1991
  • Molecular association of glucose transporters with the other proteins in the plasma membrane was assessed by gel electrophoresis and immunoblot techniques. Approximately $31.5{\pm}5.1%$ of GLUT-4, $64.8{\pm}2.7%$ of clathrin, 48.7% of total protein in the plasma membrane (PM) were found insoluble upon extraction with 1% Tx-100. Sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed that the Tx-100 insoluble PM fraction contained about 4 major polypeptides with apparent molecular weight of above 200, 100-120, 80 and 30-35 KDa that were readily removed upon wash with a high pH buffer which is known to remove clathrin and 0.5 M Tris-buffer which is known to remove assembly proteins (AP). Immunoblotting of GLUT4 and clathrin against specific antibodies showed that GLUT-4 and clathrin were co-solubilized up to 84.6% and 82.7% respectively by wash with a high pH buffer and 1% Tx-100. When the membrane was pre-washed with a high pH buffer and 0.5 M Tris solution, GLUT4 and clathrin were not solubilized further suggesting that GLUT4 molecules are in molecular association with clathrin, AP and/or other extrinsic membrane proteins in plasma membrane and the formation of clathrin-coated structures might be involved in insulin stimulated glucose transporter translocation mechanism.

  • PDF

Cloning and Characterization of Ribosome-associated Membrane Protein 4 (RAMP4) gene in silkworm Bombyx mori

  • Yao Qin;Hu Zhigang;Xu Jiaping;Chen Keping
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.10 no.2
    • /
    • pp.125-129
    • /
    • 2005
  • Ribosome-associated membrane protein 4 (RAMP4) is a membrane protein that exposes its N-terminal hydrophilic portion on the cytoplasmic side and spans the membrane close to the C-terminal end. RAMP4 has previously been reported to belong to the set of proteins that remains associated with membrane-bound ribosomes, and controls the glycosylation of major histocompatbility complex class II-associated invariant chain. RAMP4 also may be relative to the stabilization of membrane proteins in response to stress, with other components of translocon, and molecular chaperons in ER. Application of 5'-RACE technique with specially designed primer, we cloned a 715 bp cDNA fragment which contains a 195 bp ORF, termed RAMP4. The deduced protein has 64 amino acid residues and contains a putative transmembrane-spanning domain at the COOH terminus.

Toxic Effects of Catechol and 4-Chlorobenzoate Stresses on Bacterial Cells

  • Park, Sang-Ho;Ko, Yeon-Ja;Kim, Chi-Kyung
    • Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.206-212
    • /
    • 2001
  • Catechol and 4-chlorobenzoate (4CBA) which are produced from the biodegradation of a variety of aromatic and chloroaromatics have been recognized as toxic to living organisms. In this study, the toxic effects of catechol and 4-chlorobenzoate on gram-positive and -negative bacteria were examined in terms of survival, morphology, change in fatty acids and membrane protein composition. The survival rate of the organisms during treatment for 6 h was decreased, as the concentration of each aromatic was increased. Escherichia coli and Pseudomonas cells treated with catechol and 4CBA at concentrations causing a significant decrease in their viability, showed destructive openings in their cell envelopes. Bacills subtilis treated with the aromatics were reduced in cell size and Staphylococcus aureus cells displayed irregular rod shapes with wrinkled surfaces. The bacterial cells treated with 20 mM catechol showed increases in unsaturated fatty acids, but several saturated fatty acids were decreased. In the E. coli cells treated with 20 mM catechol, inner membrane proteins of 150 kDa and 105 kDa were decreased. But several kinds of the inner and outer membrane proteins were increased. In B. subtilis treated with 20 mM catechol, several kinds of proteins were increased or decreased in membrane proteins.

  • PDF

Low-ε Static Probe Development for 15N-1H Solid-state NMR Study of Membrane Proteins for an 800 MHz NB Magnet

  • Park, Tae-Joon;Choi, Sung-Sub;Jung, Ji-Ho;Park, Yu-Geun;Kim, Yongae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.823-826
    • /
    • 2013
  • A low-${\varepsilon}$ solid-state NMR(Nuclear Magnetic Resonance) probe was developed for the spectroscopic analysis of two-dimensional $^{15}N-^1H$ heteronuclear dipolar coupling in dilute membrane proteins oriented in hydrated and dielectrically lossy lipid environments. The system employed a 800 MHz narrow-bore magnet. A solenoid coil strip shield was used to reduce deleterious RF sample heating by minimizing the conservative electric fields generated by the double-tuned resonator at high magnetic fields. The probe's design, construction, and performance in solid-state NMR experiments at high magnetic fields are described here. Such high-resolution solid-state NMR spectroscopic analysis of static oriented samples in hydrated phospholipid bilayers or bicelles could aid the structural analysis of dilute biological membrane proteins.

Specific kinesin and dynein molecules participate in the unconventional protein secretion of transmembrane proteins

  • Sung Ho Eun;Shin Hye Noh;Min Goo Lee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.5
    • /
    • pp.435-447
    • /
    • 2024
  • Secretory proteins, including plasma membrane proteins, are generally known to be transported to the plasma membrane through the endoplasmic reticulum-to-Golgi pathway. However, recent studies have revealed that several plasma membrane proteins and cytosolic proteins lacking a signal peptide are released via an unconventional protein secretion (UcPS) route, bypassing the Golgi during their journey to the cell surface. For instance, transmembrane proteins such as the misfolded cystic fibrosis transmembrane conductance regulator (CFTR) protein and the Spike protein of coronaviruses have been observed to reach the cell surface through a UcPS pathway under cell stress conditions. Nevertheless, the precise mechanisms of the UcPS pathway, particularly the molecular machineries involving cytosolic motor proteins, remain largely unknown. In this study, we identified specific kinesins, namely KIF1A and KIF5A, along with cytoplasmic dynein, as critical players in the unconventional trafficking of CFTR and the SARS-CoV-2 Spike protein. Gene silencing results demonstrated that knockdown of KIF1A, KIF5A, and the KIF-associated adaptor protein SKIP, FYCO1 significantly reduced the UcPS of △F508-CFTR. Moreover, gene silencing of these motor proteins impeded the UcPS of the SARS-CoV-2 Spike protein. However, the same gene silencing did not affect the conventional Golgi-mediated cell surface trafficking of wild-type CFTR and Spike protein. These findings suggest that specific motor proteins, distinct from those involved in conventional trafficking, are implicated in the stress-induced UcPS of transmembrane proteins.

Effects of heat and ethanol shock on the membrane proteins of Vibrio vulnificus (열 및 에탄을 shock이 Vibrio vulnificus의 막단백질에 미치는 영향)

  • Heo, Moon-Soo;Jung, Cho-Rok
    • Journal of fish pathology
    • /
    • v.12 no.2
    • /
    • pp.89-99
    • /
    • 1999
  • New sixteen heat shock proteins (Hsps) and ten ethanol shock proteins were appeared on the analysis with SDS-PAGE when cultivation temperature for the Vibrio vulnifrcus ATCC 27562 strain was shifted-up to $42^{\circ}C$ from $30^{\circ}C$ for 20 mins and treated with of 6% ethanol for 10 mins, respectively. Even the induction of thermotolerance in V. vulnificus was coincided with the induction of Hsps if the pre-shock was adjusted to thermal temperature. Outer membrane proteins (OMPs) that were purified from the membrane of cells after heat shock showed more immunodominant pattern to the immunized rabbit anti-V. vulnificus O serum in enzyme-linked immunosorbent assay (ELISA). On the western immunoblot analysis it was confirmed that both 62 kDa IMP and 69 kDa OMP in the Hsps and 48 kDa IMP a major OMP in the ethanol shock proteins were reacted with rabbit anti-V. vulnificus O sera. Agglutination titer of the heat shocked V. vulnificus with rabbit anti-V. vulnificus O serum was higher than that of the untreated bacteria.

  • PDF

The Effects of Salt Stress on Photosynthetic Electron Transport and Thylakoid Membrane Proteins in the Cyanobacterium Spirulina platensis

  • Sudhir, Putty-Reddy;Pogoryelov, Denys;Kovacs, Laszlo;Garab, Gyozo;Murthy, Sistla D.S.
    • BMB Reports
    • /
    • v.38 no.4
    • /
    • pp.481-485
    • /
    • 2005
  • The response of Spirulina (Arthrospira) platensis to high salt stress was investigated by incubating the cells in light of moderate intensity in the presence of 0.8 M NaCl. NaCl caused a decrease in photosystem II (PSII) mediated oxygen evolution activity and increase in photosystem I (PSI) activity and the amount of P700. Similarly maximal efficiency of PSII (Fv/Fm) and variable fluorescence (Fv/Fo) were also declined in salt-stressed cells. Western blot analysis reveal that the inhibition in PSII activity is due to a 40% loss of a thylakoid membrane protein, known as D1, which is located in PSII reaction center. NaCl treatment of cells also resulted in the alterations of other thylakoid membrane proteins: most prominently, a dramatic diminishment of the 47-kDa chlorophyll protein (CP) and 94-kDa protein, and accumulation of a 17-kDa protein band were observed in SDS-PAGE. The changes in 47-kDa and 94-kDa proteins lead to the decreased energy transfer from light harvesting antenna to PSII, which was accompanied by alterations in the chlorophyll fluorescence emission spectra of whole cells and isolated thylakoids. Therefore we conclude that salt stress has various effects on photosynthetic electron transport activities due to the marked alterations in the composition of thylakoid membrane proteins.

Fouling Mechanism of Microfiltration/Ultrafiltration by Macromolecules and a Suppression Strategy from the Viewpoint of the Hydration Structure at the Membrane Surface

  • Akamatsu, Kazuki;Nagumo, Ryo;Nakao, Shin-ichi
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.205-212
    • /
    • 2020
  • This short review focuses on fouling by proteins and macromolecules in microfiltration/ultrafiltration. First, an experimental system that enables investigation of how the extent of the adsorption of proteins and macromolecules on membrane surfaces contributes to a decrease in filtrate flux in microfiltration/ultrafiltration is described. Using this system, a causal relationship - not a correlation - indicating that adsorption results in a decrease in filtrate flux could be clearly demonstrated in some cases. Second, a hydration structure at the membrane surface that can suppress adsorption is discussed, inspired by biomaterial research. In their hydrated states, polymers with low-fouling properties have water molecules with a particular structure. Finally, some successful examples of the development of low-fouling membranes via surface modification using low-fouling polymers are discussed.

Reduction of proteins and products of their hydrolysis in process of cleaning post-production herring (Clupea harengus) marinating brines by using membranes

  • Drost, Arkadiusz;Nedzarek, Arkadiusz;Torz, Agnieszka
    • Membrane and Water Treatment
    • /
    • v.7 no.5
    • /
    • pp.451-462
    • /
    • 2016
  • The molecular weight of proteins and protein hydrolysis products (PHP) in the fractionated post-production marinating brines left after herring marination process was determined by the HPLC. The proteins and PHP retention was evaluated in the three-stage purification process with the usage of polypropylene bag ($25{\mu}m$) and ceramic membranes with the cut-off of 150 and 1 kDa. It was found that the process of marination contributes to high participation of compounds in the post-production marinating brines. Those are characterised by low molecular weight, formed as a result of protein hydrolysis. Each stage of the scavenging process was reducing the content of proteins and PHP. The lowest retention was observed in the stage at which a PP bag was used, while the highest in the UF process, with the usage of 150 kDa membrane. The total retention of proteins and PHP differed according to the type of post-production marinating brines and reached the level of 16-22%.

경구투여 백신 후보물질로서의 Helicobacter pylori 외막 단백질의 조사

  • 박형배;최태부
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.2
    • /
    • pp.129-136
    • /
    • 1997
  • Helicobacter pylori is a spiral-shaped, microaerophilic human gastric pathogen causing chronic-active gastritis in association with duodenal ulcer and gastric cancer. To investigate the possibility of H. pylori outer membrane proteins (OMPS) as the oral vaccine antigens, sarcosine-insoluble outer membrane fraction has been prepared from H. pylori NCTC 11637. The major OMPs having apparent molecular masses of 62 kDa, 54 kDa and 33 kDa were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), which were identified as urease B subunit (UreB), heat shock protein (Hsp54 kDa) and urease A subunit (UreA), respectively. Minor protein bands of 57 kDa, 52 kDa, 40 kDa, 36 kDa and 31 kDa were also observed. The antigenicity of H. pylori OMPs and antigenic cross-reactivity among the strains were determined by immunoblot analysis using anti-H. pylori OMPs antisera or intestinal lavage solutions. The results showed that UreB, Hsp54 kDa, UreA and 40 kDa proteins vigorously stimulated mucosal immune response rather than systemic immunity. From this results, these proteins seemed to be useful as the antigen candidates for the oral vaccine. The immunoblotting results with surface proteins from eight isolated H. pylori strains were similar to that of H. pylori NCTC 11637. The IgA which had been arised from oral administration of H. pylori OMPs, was able to bind H. pylori whole-cells.

  • PDF