• Title/Summary/Keyword: membrane processes

Search Result 775, Processing Time 0.034 seconds

Unveiling the impact of lysosomal ion channels: balancing ion signaling and disease pathogenesis

  • Yoona Jung;Wonjoon Kim;Na Kyoung Shin;Young Min Bae;Jinhong Wie
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.4
    • /
    • pp.311-323
    • /
    • 2023
  • Ion homeostasis, which is regulated by ion channels, is crucial for intracellular signaling. These channels are involved in diverse signaling pathways, including cell proliferation, migration, and intracellular calcium dynamics. Consequently, ion channel dysfunction can lead to various diseases. In addition, these channels are present in the plasma membrane and intracellular organelles. However, our understanding of the function of intracellular organellar ion channels is limited. Recent advancements in electrophysiological techniques have enabled us to record ion channels within intracellular organelles and thus learn more about their functions. Autophagy is a vital process of intracellular protein degradation that facilitates the breakdown of aged, unnecessary, and harmful proteins into their amino acid residues. Lysosomes, which were previously considered protein-degrading garbage boxes, are now recognized as crucial intracellular sensors that play significant roles in normal signaling and disease pathogenesis. Lysosomes participate in various processes, including digestion, recycling, exocytosis, calcium signaling, nutrient sensing, and wound repair, highlighting the importance of ion channels in these signaling pathways. This review focuses on different lysosomal ion channels, including those associated with diseases, and provides insights into their cellular functions. By summarizing the existing knowledge and literature, this review emphasizes the need for further research in this field. Ultimately, this study aims to provide novel perspectives on the regulation of lysosomal ion channels and the significance of ion-associated signaling in intracellular functions to develop innovative therapeutic targets for rare and lysosomal storage diseases.

Copper-based Surface Coatings and Antimicrobial Properties Dependent on Oxidation States (구리 기반 표면코팅 및 산화수에 따른 항균·항바이러스 특성)

  • Sangwon Ko
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.479-487
    • /
    • 2023
  • Copper is cost-effective and abundantly available as a biocidal coating agent for a wide range of material surfaces. Natural oxidation does not compromise the efficacy of copper, allowing it to maintain antimicrobial activity under prolonged exposure conditions. Furthermore, copper compounds exhibit a broad spectrum of antimicrobial activity against pathogenic yeast, both enveloped and non-enveloped types of viruses, as well as gram-negative and gram-positive bacteria. Contact killing of copper-coated surfaces causes the denaturation of proteins and damage to the cell membrane, leading to the release of essential components such as nucleotides and cytoplasm. Additionally, redox-active copper generates reactive oxygen species (ROS), which cause permanent cell damage through enzyme deactivation and DNA destruction. Owing to its robust stability, copper has been utilized in diverse forms, such as nanoparticles, ions, composites, and alloys, resulting in the creation of various coating methods. This mini-review describes representative coating processes involving copper ions and copper oxides on various material surfaces, highlighting the antibacterial and antiviral properties associated with different oxidation states of copper.

Clinical Application of Exosomes for COVID-19 and Diagnosis (COVID-19 치료 및 진단을 위한 Exosome의 임상적 적용)

  • June Seok HEO
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.56 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • Exosomes are nano-sized membrane-bound extracellular vesicles containing various biological molecules, such as nucleic acids, proteins, and lipids, which can be used to modulate physiological processes. The exosomal molecules secreted by cells can be extensively used as tools for diagnosis and therapy. Exosomes carry specific molecules released by the cells they originate from, which can be transferred to surrounding cells or tissues by the exosome. For these reasons, exosomes can be exploited as biomarkers for diagnosis, carriers for drug delivery, as well as therapeutics. In stem cell technology, exosomes have been an attractive option because they can be used as safer therapeutic agents for stem cell-based cell-free therapy. Recently, studies have demonstrated the safety and efficacy of mesenchymal stem cell-derived exosomes in alleviating symptoms associated with coronavirus disease 2019 as they have anti-inflammatory and immunomodulatory potential. Performing multiple studies on exosomes would provide innovative next-generation options for clinical diagnostics and therapy. This review summarizes the use of exosomes focusing on their diverse roles. In addition, the potential of exosomes is illustrated with a focus on how exosomes can be exploited as powerful tools in the days to come.

Phosphorylation of tyrosine-14 on Caveolin-1 enhances lipopolysaccharide-induced inflammation in human intestinal Caco-2 cells

  • Gong Deuk Bae;Kyong Kim;Se-Eun Jang;Dong-Jae Baek;Eun-Young Park;Yoon Sin Oh
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.311-319
    • /
    • 2023
  • Caveolin-1 (Cav-1) is the main structural component of the caveolae on the plasma membrane, which regulates various cellular processes, including cell growth, differentiation, and endocytosis. Although a recent study demonstrated that Cav-1 might be involved in diabetes-associated inflammation, its exact role in the intestine was unclear. In this study, we examined the intestinal expression of Cav-1 in diabetic conditions. We also investigated its effect on lipopolysaccharide (LPS)-induced inflammation by expressing this protein in human intestinal Caco-2 cells lacking Cav-1. We observed that increased Cav-1 levels and decreased expression of tight junction proteins affected intestinal permeability in high-fat diet-induced diabetic mice. When Caco-2 cells were treated with LPS, Cav-1 enhanced the NF-κB signaling. Moreover, LPS reduced the expression of tight junction proteins while it increased cell-cell permeability and reactive oxygen species generation in Caco-2 cells and this effect was amplified by cav-1 overexpression. LPS treatment promoted phosphorylation of tyrosine-14 (Y14) on Cav-1, and the LPS-induced NF-κB signaling was suppressed in cells expressing non-phosphorylatable Cav-1 (tyrosine-14 to phenylalanine mutant), which reduced intestinal barrier permeability. These results suggest that Cav-1 expression promotes LPS-induced inflammation in Caco-2 cells, and phosphorylation of Y14 on Cav-1 might contribute to the anti-inflammatory response in LPS-induced NF-κB signaling and cell permeability.

Development and growth of the temporal fascia: a histological study using human fetuses

  • Kei Kitamura;Satoshi Ishizuka;Ji Hyun Kim;Hitoshi Yamamoto;Gen Murakami;Jose Francisco Rodriguez-Vazquez;Shin-ichi Abe
    • Anatomy and Cell Biology
    • /
    • v.57 no.2
    • /
    • pp.288-293
    • /
    • 2024
  • The temporal fascia is a double lamina sandwiching a thick fat layer above the zygomatic bony arch. To characterize each lamina, their developmental processes were examined in fetuses. We observed histological sections from 22 half-heads of 10 mid-term fetuses at 14-18 weeks (crown-rump length, 95-150 mm) and 12 near-term fetuses at 26-40 weeks (crown-rump length, 215-334 mm). The superficial lamina of the temporal fascia was not evident at mid-term. Instead, a loose subcutaneous tissue was attached to the thin, deep lamina of the temporal fascia covering the temporalis muscle. At near-term, the deep lamina became thick, while the superficial lamina appeared and exhibited several variations: i) a mono-layered thick membrane (5 specimens); ii) a multi-layered membranous structure (6) and; iii) a cluster of independent thick fasciae each of which were separated by fatty tissues (1). In the second and third patterns, fatty tissue between the two laminae was likely to contain longitudinal fibrous bands in parallel with the deep lamina. Varying proportions of the multi-layered superficial lamina were not attached to the zygomatic arch, but extended below the bony arch. Whether or not lobulation or septation of fatty tissues was evident was not dependent on age. The deep lamina seemed to develop from the temporalis muscle depending on the muscle contraction. In contrast, the superficial lamina developed from subcutaneous collagenous bundles continuous to the cheek. Therein, a difference in development was clearly seen between two categories of the fasciae.

EFFECT OF OCTANOL, THE GAP JUNCTION BLOCKER, ON THE REGULATION OF FLUID SECRETION AND INTRACELLULAR CALCIUM CONCENTRATION IN SALIVARY ACINAR CELLS (흰쥐 악하선 세포에서 gap junction 봉쇄제인 octanol이 타액분비 및 세포내 $Ca^{2+}$ 농도 조절에 미치는 영향)

  • Lee, Ju-Seok;Seo, Jeong-Taeg;Lee, Syng-Il;Lee, Jong-Gap;Sohn, Heung-Kyu
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.2
    • /
    • pp.399-415
    • /
    • 1999
  • From bacteria to mammalian cells, one of the most important mediators of intracellular signal transduction mechanisms which regulate a variety of intracellular processes is free calcium. In salivary acinar cells, elevation of intracellular calcium concentration ($[Ca^{2+}]_i$) is essential for the salivary secretion induced by parasympathetic stimulation. However, in addition to $[Ca^{2+}]_i$, gap junctions which couple individual cells electrically and chemically have also been reported to regulate enzyme secretion in pancreatic acinar cells. Since the plasma membrane of salivary acinar cells has a high density of gap junctions, and these cells are electrically and chemically coupled with each other, gap junctions may modulate the secretory function of salivary glands. In this respect, I planned to investigate the role of gap junctions in the modulation of salivary secretion and $[Ca^{2+}]_i$, using mandibular salivary glands of rats. In order to measure the salivary flow rate, fluid was collected from the cannulated duct of the isolated perfused rat mandibular glands at 2 min intervals. $[Ca^{2+}]_i$, was measured from the cells loaded with fura-2 by spectrofluorometry. The results obtained were as follows: 1. CCh-induced salivary secretion was reversibly inhibited by 1 mM octanol, a gap junction blocker. 2. CCh-induced increase in $[Ca^{2+}]_i$, was also reversed by the application of 1 mM octanol. 3. Octanol did not block the initial increase in $[Ca^{2+}]_i$ caused by CCh, which suggested that the reduction of $[Ca^{2+}]_i$, caused by gap junction blockade was not resulted from the inhibition of $Ca^{2+}$ release from intracellular $Ca^{2+}$ stores. 4. Addition of octanol during stimulation with $1{\mu}M$ thapsigargin, a potent microsomal ATPase inhibitor, reduced $[Ca^{2+}]_i$, to the basal level. This suggested that inhibition of gap junction permeability closed plasma membrane $Ca^{2+}$ channels. 5. 2,5-di-tert-butyl-1,4-benzohydroquinone (TBQ) generated $[Ca^{2+}]_i$ oscillations resulting from periodic influx of $Ca^{2+}$ via plasma membrane. The TBQ-induced $[Ca^{2+}]_i$ oscillations were stopped by the application of 1mM octanol which implicated that gap junctions modulate the permeability of plasma membrane $Ca^{2+}$ channels. 6. Glycyrrhetinic acid, another well known gap junction blocker, also inhibited CCh-induced salivary secretion from rat mandibular glands. These results suggested that gap junctions play an important role in the modulation of fluid secretion from the rat mandibular glands and this was probably due to the inhibition of $Ca^{2+}$ influx through the plasma membrane $Ca^{2+}$ channels.

  • PDF

Process Development of a Virally-Safe Acellular Bovine Amniotic Membrane for Biological Dressing (바이러스 안전성이 보증된 무세포 소 양막 생물창상피복재 제조 공정 개발)

  • Bae, Jung-Eun;Kim, Chang-Kyong;Kim, Sung-Po;Yang, Eun-Kyung;Kim, In-Seop
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.4
    • /
    • pp.420-427
    • /
    • 2010
  • A process for manufacturing virally-safe bovine amniotic membrane(BAM) has been developed for biological dressing. BAM was harvested from a healthy bovine placenta, and then the epithelium was removed. The remaining stromal layer was consecutively disinfected with 70% ethanol and 0.05% sodium hypochlorite. The stromal layer was incubated in a decellularization solution containing 0.25%(w/v) trypsin to remove the cellular components. The resulting acelluar BAM was lyophilized to preserve its biochemical and structural integrity. The BAM was packed and exposed to 25 kGy of gamma irradiation for sterilization purpose. Histological, electron microscopical, and biochemical observations showed that the acellualr BAM had intact structural integrity of three dimensional collagen fibers and contained several growth factors, accelerating wound healing, such as EGF (Epidermal growth factor), KGF (Keratinocyte growth factor), and FGF (Fibroblast growth factor). Bovine herpes virus (BHV), bovine viral diarrhoea virus (BVDV), bovine parainfluenza virus type 3 (BPIV-3), and bovine parvovirus (BPV) were chosen as the biological indicators for validation of viral safety of the acellular BAM. Samples from relevant stages of the production process were spiked with each virus and subjected to viral inactivation processes. Viruses were recovered from the samples and then titrated immediately. All the viruses tested were completely inactivated to undetectable levels within 1 h of 70% ethanol treatment. Enveloped viruses such as BHV, BVDV, and BPIV-3 were more effectively inactivated than BPV by 0.05% sodium hypochlorite treatment. BHV, BVDV, and BPIV-3 were completely inactivated to undetectable levels by 25 kGy of gamma irradiation. Also BPV was effectively inactivated by 25 kGy of gamma irradiation. The cumulative log reduction factors of BHV, BVDV, BPIV-3, and BPV were ${\geq}$13.30, ${\geq}$14.32, ${\geq}$15.22, and ${\geq}$7.57, respectively. These results indicate that the production process for acelluar BAM has a sufficient virus-reducing capacity to achieve a high margin of the virus safety.

Crop Injury (Growth Inhibition) Induced by Herbicides and Remedy to Reduce It (제초제(除草劑) 약해발생(藥害發生) 양상(樣相)과 경감대책(輕減對策))

  • Kim, K.U.
    • Korean Journal of Weed Science
    • /
    • v.12 no.3
    • /
    • pp.261-270
    • /
    • 1992
  • Many herbicides that are applied at the soil before weed emergence inhibit plant growth soon after weed germination occurs. Plant growth has been known as an irreversible increase in size as a result of the processes of cell divison and cell enlargement. Herbicides can influence primary growth in which most new plant tissues emerges from meristmatic region by affecting either or both of these processes. Herbicides which have sites of action during interphase($G_1$, S, $G_2$) of cell cycle and cause a subsequent reduction in the observed frequency of mitotic figures can be classified as an inhibitor of mitotic entry. Those herbicides that affect the mitotic sequence(mitosis) by influencing the development of the spindle apparatus or by influencing new cell plate formation should be classified as causing disruption of the mitotic sequence. Sulfonylureas, imidazolinones, chloroacetamides and some others inhibit plant growth by inhibiting the entry of cell into mitosis. The carbamate herbicides asulam, carbetamide, chlorpropham and propham etc. reported to disrupt the mitotic sequence, especially affecting on spindle function, and the dinitroaniline herbicides trifluralin, nitralin, pendimethalin, dinitramine and oryzalin etc. reported to disrupt the mitotic sequence, particularly causing disappearence of microtubles from treated cells due to inhibition of polymerization process. An inhibition of cell enlargement can be made by membrane demage, metabolic changes within cells, or changes in processes necessary for cell yielding. Several herbicides such as diallate, triallate, alachlor, metolachlor and EPTC etc. reported to inhibit cell enlargement, while 2, 4-D has been known to disrupt cell enlargement. One potential danger inherent in the use of soil acting herbicides is that build-up of residues could occur from year to year. In practice, the sort of build-up that would be disastrous is unikely to occur for substances applied at the correct soil concentration. Crop injury caused by soil applied herbicides can be minimized by (1) following the guidance of safe use of herbicides, particularly correct dose at correct time in right crop, (2) by use of safeners which protect crops against injury without protecting any weed ; interactions between herbicides and safeners(antagonists) at target sites do occur probably from the following mechanisms (1) competition for binding site, (2) circumvention of the target site, and (3) compensation of target site, and another mechanism of safener action can be explained by enhancement of glutathione and glutathione related enzyme activity as shown in the protection of rice from pretilachlor injury by safener fenclorim, (3) development of herbicide resistant crops ; development of herbicide-resistant weed biotypes can be explained by either gene pool theory or selection theory which are two most accepted explanations, and on this basis it is likely to develop herbicide-resistant crops of commercial use. Carry-over problems do occur following repeated use of the same herbicide in an extended period of monocropping, and by errors in initial application which lead to accidental and irregular overdosing, and by climatic influence on rates of loss. These problems are usually related to the marked sensitivity of the particular crops to the specific herbicide residues, e.g. wheat/pronamide, barley/napropamid, sugarbeet/ chlorsulfuron, quinclorac/tomato. Relatively-short-residual product, succeeding culture of insensitive crop to specific herbicide, and greater reliance on postemergence herbicide treatments should be alternatives for farmer practices to prevent these problems.

  • PDF

AN EXPERIMENTAL STUDY OF THE IRRADIATION EFFECTS ON THE MICROVASCULATURE OF THE RAT SUBMANDIBULAR GLAND (방사선 조사가 백서 악하선 미세혈관계에 미치는 영향에 관한 실험적 연구)

  • Choi Karp Shik;Choi Soon Chul;Park Tae won
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.22 no.1
    • /
    • pp.43-53
    • /
    • 1992
  • The purpose of this study was to investigate the effects of irradiation on the microvascular structure of the submandibular gland in rats. For this study, 110 male rats were singly irradiated with the dose of 10Gy or 20Gy to their neck region by 6MV X-irradiation and sacrificed on the 1st, 3rd, 7th, 14th and 28th day after irradiation. The author observed distribution and structural changes of the microvasculature in rat submandibular glands using a scanning electron microscope by forming vascular resin casting. The author observed ultrastructural changes of the endothelial cells using a transmission electron microscope, and also histologic changes using a light microscope at Hematoxylin and Eosin staining and PAS staining process. The results of the irradiation effects on the microvasculature in rat submandibular gland were as follows: By light microscopic examination, the dilation of small vessels were observed until the 7th day after irradiation. After then, the vascular constriction and decrease in number of small vessels were noticed. Changes were greater on 20Gy irradiated group than on lOGy irradiated group. The reaction to PAS staining at acinar cells was decreased just after irradiation, but gradually recovered with days. There was no specific difference between two irradiated groups. By scanning electron microscopic examination, general findings on the two irradiated groups were similar. The dilation of conduits and meandering were observed on the 3rd day after irradiation. Decrease of capillary density and blunt ended small vessels were appeared on the 7th day after irradiation. After that, findings of the tortuous and twisted vascular running and coarseness of capillary lumen were increased. Changes were greater on 20Gy irradiated group than on l0Gy irradiated group. By transmission electron microscopic examination, increase of the formation of cytoplasmic process was observed on the 3rd day after irradiation. After that, swelling of endothelial cell and bridge formation of cytoplasmic processes were also observed, but destruction of endothelial cell and loss of basement membrane were observed only on 20Gy irradiated group on the 28th day after irradiation.

  • PDF

Two-Pore Domain $K^+$ Channels Expressed in Mammalian Reproductive Cells and Organs (포유동물 생식세포 및 생식기관에서 발현되는 Two-Pore Domain 칼륨 통로)

  • Lee, Hyo-Zhin;Han, Jae-Hee;Kang, Da-Won
    • Journal of Embryo Transfer
    • /
    • v.24 no.3
    • /
    • pp.189-197
    • /
    • 2009
  • Two-pore domain $K^+(K_{2P})$ channels contribute to setting the resting membrane potential in excitable and nonexcitable cells. However, the cellular or tissue distribution and function of $K_{2P}$ channels expressed in mammalian germ cells and reproductive organs have not yet been reviewed by researchers. In this review, we focus on expression, localization and expected properties of $K_{2P}$ channels in germ cells and reproductive organs. The $K_{2P}$ channels are expressed in human cytotrophoblast cells, myometrium, placental vascular system, uterine smooth muscle, and pregnant term tissue, suggesting that $K_{2P}$ channels might be involved in the processes of pregnance. The $K_{2P}$ channels are also expressed in mouse zygotes, monkey sperm, ovary, testis, germ cells, and embryos of Korean cattle. Interestingly, $K_{2P}$ channels are modulated by changes in temperature and oxygen concentration which play an important role in embryonic development. Also, $K_{2P}$ channels are responsible for $K^+$ efflux during apoptotic volume decreases in mouse zygotes. These expression patterns and properties of the $K_{2P}$ channels in reproductive organs and germ cells are likely to help the understanding of ion channel-related function in reproductive physiology.