• Title/Summary/Keyword: membrane processes

Search Result 775, Processing Time 0.033 seconds

Evaluation of Oil Pollutants Removal in Seawater as Pretreatment Process for Reverse Osmosis Desalination Process (역삼투식 해수담수화의 전처리공정으로서 유분 제거의 평가)

  • ;Okada Mitsumasa
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.05a
    • /
    • pp.205-209
    • /
    • 2003
  • The various pretreatment processes were evaluated for removal of oil pollutants with weathered oil contaminated seawater in a reverse osmosis desalination process. Weathered oil contaminated seawater was made by biodegradation and photooxidation with oil containing seawater. Coagulation, ultrafiltration, advanced oxidation processes and granular activated carbon filtration was used with pretreatment for dissolved organic carbon. Crude oil was removed but. weathered oil contaminated seawater was not removed by biodegradation and coagulation. DOC and E260 was removed with about 20 % and 40 % by membrane filter of cut off molecular weight 500. So, the most of dissolved organic carbon in weathered oil contaminated seawater was revealed that molecular weight was lower than 500. It is difficult to remove DOC in weathered oil contaminated seawater by advanced oxidation processes treatment, but, E260 was removed more high. However, DOC in weathered oil contaminated seawater was easily adsorbed to GAC. It is revealed that DOC was removed by adsorption.

  • PDF

Finite Element Analysis of Axisymmetric Sheet Hydroforming Processes (축대칭 박판 액압성형 공정의 유한요소 해석)

  • Jeong, Y. H.;Lee, S. H.;Keum, Y. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.26-29
    • /
    • 1999
  • The sectional forming analysis program for analyzing the hydroforming processes of axisymmetric sheet parts was tleveloped. The rigid-viscoplastic FEM formulation based on membrane theory was derived, wh~cta simi~ltaneously solve force equilibrium as well as non-penetration condition. Hill's non-quadratic normal anisotropic yield theory(1979) was used for material behaviour. For describing the liquid pressure iaction, the flexible tool concept was introduced. Isotropic hardening law was also assumed. To verify the \,alidity of the formulation, the stepped cup forming process as well as the hydrostatic bulging test were \imnlated. Simulation results agreed well with Finckenstein and experimental ones.

  • PDF

Mass Spectrometry-based Comparative Analysis of Membrane Protein: High-speed Centrifuge Method Versus Reagent-based Method (질량분석기를 활용한 막 단백질 비교분석: High-speed Centrifuge법과 Reagent-based법)

  • Lee, Jiyeong;Seok, Ae Eun;Park, Arum;Mun, Sora;Kang, Hee-Gyoo
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.1
    • /
    • pp.78-85
    • /
    • 2019
  • Membrane proteins are involved in many common diseases, including heart disease and cancer. In various disease states, such as cancer, abnormal signaling pathways that are related to the membrane proteins cause the cells to divide out of control and the expression of membrane proteins can be altered. Membrane proteins have the hydrophobic environment of a lipid bilayer, which makes an analysis of the membrane proteins notoriously difficult. Therefore, this study evaluated the efficacy of two different methods for optimal membrane protein extraction. High-speed centrifuge and reagent-based method with a -/+ filter aided sample preparation (FASP) were compared. As a result, the high-speed centrifuge method is quite effective in analyzing the mitochondrial inner membranes, while the reagent-based method is useful for endoplasmic reticulum membrane analysis. In addition, the function of the membrane proteins extracted from the two methods were analyzed using GeneGo software. GO processes showed that the endoplasmic reticulum-related responses had higher significance in the reagent-based method. An analysis of the process networks showed that one cluster in the high-speed centrifuge method and four clusters in the reagent-based method were visualized. In conclusion, the two methods are useful for the analysis of different subcellular membrane proteins, and are expected to assist in selecting the membrane protein extraction method by considering the target subcellular membrane proteins for study.

Application of Ceramic MF Membrane at the Slow Sand Filtration Process (완속모래여과 공정에서 세라믹 MF 막의 적용)

  • Choi, Kwang-Hun;Park, Jong-Yul;Kim, Su-Han;Kim, Jeong-Sook;Kang, Lim-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.877-882
    • /
    • 2013
  • The application of ultrafiltration (UF) and microfiltration (MF) membranes has been increased for drinking water purification. The advantages of UF/MF membrane process compared to conventional treatment processes are stable operation under varying feed water quality, smaller construction area, and automatic operation. Most membrane treatment plants are designed with polymeric membranes. Recently, some studies suggested that the process of treating surface water with ceramic membranes is competitive to the application of polymeric membranes. Higher water flux, less frequent cleaning, and much longer lifetime are the advantages of ceramic membrane comparing to polymeric membrane. Therefore, this research focused on the application of ceramic MF membrane pilot plant at the slow sand filtration plant. The ceramic membrane pilot plant has three trains that used raw water and sand filtered water as a feed water, respectively. For optimizing the pilot plant process, the coagulation with PACl coagulant was used as a pretreatment of ceramic membrane process. In addition, CEB (Chemical Enhanced Backwash) process using $H_2SO_4$ and NaOCl was used for 1.5 days, respectively. The experimental results showed that applying the optimum coagulant dose before membrane filtration showed enhancing membrane fluxes for both raw water and sand filtered water. Also, when using raw water as a feed of membrane, minimum fouling rate was 2.173 kPa/cycle with 25 mg/L of PACl and when using sand filtered water, the minimum fouling rate was 0.301 kPa/cycle with 5 mg/L of PACl.

Analysis of Membrane Integrity and Removal Efficiency Considering Membrane Defect and Pore Size (막 파단 및 공극크기에 따른 막 완결성 및 제거효율 분석)

  • Hur, Hyun-chul;Rhee, Ok-jae;Lee, Kwang-jae;Kim, Kwang-ho;Choi, Young-june;Lee, Joo-hee;Hong, Seungkwan
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.4
    • /
    • pp.423-429
    • /
    • 2008
  • Microfiltration (MF) and ultrafiltration (UF) processes for removal of particulate materials (i.e., turbidity, microorganisms and viruses) have been used to produce drinking water with higher quality. As membrane filtration technique has become widely applied for drinking water treatment, the importance of membrane integrity test (MIT) has also been increasingly emphasized. The results of pressure decay test (PDT) were presented in the paper to monitor membrane integrity. In this paper the PDT was carried out with deliberately-defected membrane fibers to evaluate the sensitivity of PDT on membrane fiber damage. Variation of pressure decay rate and removal rate were investigated to evaluate the impact of defection (defection ratio) and pore size of membrane. The membrane integrity could be successfully monitored by the PDT. The pressure decay rate varied from $0.002{\sim}0.189kg_f/cm^2hr$ with the initial pressure ranged from 0.2 to $1.0kg_f/cm^2hr$. Higher initial pressure which provided with higher pressure decay rate was preferred to evaluate the defection of membrane fiber. As for the particle removal rate, the Log Removal Rate (LRV) of kaolin solution decreased significantly from 3.78 to 2.31 when one fiber out of 3,200 fibers was cut. The membranes with different pore size were tested to evaluate virus removal efficiency. The virus removal rate of the MF membrane ($0.1{\mu}m$) was about 30% although the poliovirus was smaller than the pore size of the MF membrane, indicating that the removal rate was much lower than Korea Water Works Association (KWWA) certificate LRV of 1.5.

Research Trends on Improvement of Physicochemical Properties of Sulfonated Hydrocarbon Polymer-based Polymer Electrolyte Membranes for Polymer Electrolyte Membrane Fuel Cell Applications (고분자 전해질 막 연료전지 응용을 위한 탄화수소계 고분자 전해질 막의 물성 향상에 관한 연구동향)

  • Inhyeok, Hwang;Davin, Choi;Kihyun, Kim
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.427-441
    • /
    • 2022
  • Polymer electrolyte membrane (PEM) serving as a separator that can prevent the permeation of unreacted fuels as well as an electrolyte that selectively transports protons from the anode to the cathode has been considered a key component of polymer electrolyte membrane fuel cell (PEMFC). The perfluorinated sulfonic acid-based PEMs, represented by Nafion®, have been commercialized in PEMFC systems due to their high proton conductivity and chemical stability. Nevertheless, these PEMs have several inherent drawbacks including high manufacturing costs by the complex synthetic processes and environmental problems caused by producing the toxic gases. Although numerous studies are underway to address these drawbacks including the development of sulfonated hydrocarbon polymer-based PEMs (SHP-PEMs), which can easily control the polymer structures, further improvement of PEM performances and durability is necessary for practical PEMFC applications. Therefore, this study focused on the various strategies for the development of SHP-PEMs with outstanding performance and durability by 1) introducing cross-linked structures, 2) incorporating organic/inorganic composites, and 3) fabricating reinforced-composite membranes using porous substrates.

Comparative performance evaluation of two UF pilot plants at the Alto da Boa Vista WTP (São Paulo, Brazil)

  • Oliveira, T.F.;Mierzwa, J.C.
    • Membrane and Water Treatment
    • /
    • v.2 no.3
    • /
    • pp.175-185
    • /
    • 2011
  • Ultrafiltration is an emerging technology for drinking water treatment because it produces better water quality as compared with conventional treatment systems. More recently, the combination of UF technology with other processes in order to improve its performance has been observed. These associations aim to maximize the contaminants removal and reduce membrane fouling. The operational performance of contaminants removal and water production of two UF pilot plants was compared. The first plant (Guarapiranga) was fed with raw water and the second plant (ABV) with pre-treated water by the coagulation, flocculation and sedimentation processes at Alto da Boa Vista WTP (Sao Paulo, Brazil). Both units operated continuously for approximately 2,500 hours, from September/2009 to January/2010. The results showed that the ABV UF pilot plant was able to operate at higher specific fluxes (6.2 $L.d^{-1}.m^{-2}.kPa^{-1}$ @ $25^{\circ}C$) than Guarapiranga (3.1 $L.d^{-1}.m^{-2}.kPa^{-1}$ @ $25^{\circ}C$). However, the number of chemical cleanings conducted in both pilot units during the considered operation period was the same (4 chemical cleanings for each plant), which shows that the pre-treatment reduced the membrane fouling. The water quality at ABV for all the variables analyzed was better, but the feed water quality was also better due to pretreatment. The rejection values for the different contaminants were higher at Guarapiranga mainly because of a pollution load reduction after pre-treatment at ABV. Even with the better performance of the ABV UF pilot plant, it is necessary to take into consideration the complexity of the complete treatment system, and also the costs involved in the construction and operation of a full-scale treatment unit.

Optimization of Bio-Methane Gas Enrichment Process for City Gas Supply (도시가스용 바이오가스 메탄농축공정 최적화)

  • Ko, Sang-Wook;Lee, Kyung Jin;Moon, Myong Hwan;Baek, Ju Hong;Ko, Jae Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.4
    • /
    • pp.76-83
    • /
    • 2017
  • Biogas, combine with ever-increasing natural gas demand, has been on the center stage in South Korea for the early part of twenty first century in an effort to reduce the emission of global warming gases. With the passage of legal system of City Gas Business Law in 2014, the biogas has its place of production and distribution to consumers. However, it has a room for its technological improvements in terms of enrichment, by separating carbon dioxide and removing impurities efficiently. For these improvements, four different methane enrichment processes were tested in this study; membrane separation, water absorption, Chemical Absorption and Adsorption. A variety of operation scenarios were applied to the processes and the best practices were drawn out. The optimum process was selected based on case study results. Methane produced in this study showed 97% purity and 98% recovery rate, which meets the requirements of the City Gas quality standards.

Discovery of Porous Materials for H2/CO2 Gas Separation and High-Throughput Computational Screening (수소/이산화탄소 가스분리용 다공성 물질 탐색 및 고속전산스크리닝 연구동향)

  • Byung Chul Yeo
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Gas separation technology becomes more useful because key gases such as H2 and CO2 regarding renewable energy resources and environmental pollutant can be effectively extracted in mixed gases. For reducing energy consumption on gas separation, membrane and adsorption processes are widely used. In both processes, porous materials are needed as membrane and adsorbent. In particular, metal-organic frameworks (MOFs), one class of the porous materials, have been developed for the purpose of gas adsorption and separation. While the number of the MOF structures is increasing due to chemical and structural tunability, good MOF membranes and adsorbents have been rarely reported by trial-and-error experiments. To accelerate the discovery of high-performing porous materials that can separate H2 and CO2, a high-throughput computational screening technique was used as efficient skill. This review introduces crucial studies of porous materials and the high-throughput computational screening works focusing on gas separation of H2 and CO2.

Recovering Critical Metal Ions from Battery Wastes: A Brief Review (폐배터리에서 희소금속을 회수하는 기술에 대한 총론)

  • Hyo Jung Kim;Cheol Lee;Won Seok Chang;Go Gi Lee;Jong Suk Lee
    • Membrane Journal
    • /
    • v.34 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • The rapid expansion of the electric vehicle market has led to increased demand for battery recycling technologies. The recycling of spent batteries is crucial to stabilize the supply of rare metals, including lithium, cobalt and nickel, which are essential components for the battery industry. In addition, the technology for recycling spent batteries can help to reduce environmental and health impacts. This review presents the theoretical principles behind the metal recovery technology and the processes that are currently commercially available. It also describes trends in research and technological developments that aim to improve existing processes, and provides an overview of where recycling technology is headed.