• Title/Summary/Keyword: membrane performances

Search Result 191, Processing Time 0.023 seconds

A hydrogen ion-selective membrane electrode based on N,N,N,N-Tetrabenzylethylenediamine as neutral carrier (N,N,N,N-Tetrabenzylethylenediamine 중성운반체를 이용한 수소 이온 선택성 막전극)

  • Jeong, Seong-Suk;Park, Myon-Yong;Chung, Koo-Chun;Cho, Dong-Hoe;Lee, Kyeong-Jae;Kim, Jae-Woo
    • Analytical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.187-193
    • /
    • 1995
  • A PVC membrane ion-selective electrodes based on N,N,N,N-tetrabenzylethylenediamine as neutral carrier has been prepared by addition of plasticizers such as phthalates and sebacate and liphophillic additives such as NaTPB. The membrane electrodes were investigated to the electric resistance, response range to hydrogen ion and the interfering effect of alkali and alkline earth metals. A electric resistance hardly had on effect of plasticizers. In case of 0.7% NaTPB added to membrane, response of the electrodes were shown the values near to theoretical Nernstian slope and interferences by alkali and alkaline earth metal were few influenced. The performances of pH-selective electrodes were shown linerality to hydrogen ion between pH 2 and 10 in the presense of alkali and alkaline earth ions. Reproducibility and stability tests were shown good results in the same pH range.

  • PDF

Characterization of SPAES Composite Membrane Containing Variously Funtionallized MMT for Direct Methanol Fuel Cell Application (다양한 관능기를 포함한 MMT/SPAES 복합막의 직접 메탄올 연료전지용 적용을 위한 특성평가)

  • Kim, Deuk-Ju;Hwang, Hae-Young;Kim, Se-Jong;Hong, Young-Taik;Kim, Hyoung-Juhn;Leem, Tae-Hoon;Nam, Sang-Yong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.1
    • /
    • pp.42-50
    • /
    • 2011
  • The Montmorillonite (MMT) in the polymer matrix is expected to reduce methanol permeability due to the tortous path formed by dispersed silicate layers. However, the polymer composite membranes containing non-proton conducting inorganic particle tend to show low proton conductivity. To solve this problem, we used an ion exchange method to prepare functionalized MMT with various silane coupling agents. The modified MMT was randomly dispersed in sulfonated poly (arylene ether sulfone) (SPAES) matrix to prepare SPAES/modified MMT composite membranes. The performances of hybrid membranes for DMFCs application were investigated. The SPAES/modified composite membrane showed increased proton conductivity compared with the non-modified MMT composite membrane. However, the methanol permeability of the SPAES/modified membrane was higher than that of the non-modified MMT.

Preparation of Composite Membranes for Recovery of Unreacted Olefin Monomers (미반응 올레핀계 모노머 회수를 위한 복합막의 제조)

  • Kim, Hyun-Gi;Kim, Sang-Yong;Kim, Sung-Soo
    • Membrane Journal
    • /
    • v.20 no.4
    • /
    • pp.297-303
    • /
    • 2010
  • Composite membranes were prepared for membrane/cold condensation process for recovery of unreacted olefin monomer from the polyolefin polymerization process by solution coating and plasma polymerization processes. Poly(dimethylsiloxane) (PDMS) solution was coated on polysulfone (PSF) support and increase of prepolymer content in solution made more dense membrane structure to result in the increase of separation factor while absolute flux decreased. Permeation of organic materials through the composite membranes follows the sorption and diffusion mechanism, which brought about the results that separation factor increased with critical temperature of the organic materials, and that flux increased with the increase of the molar volume. Crosslinking period affected the permeation characteristics. Other types of composite membranes were fabricated by plasma polymerization of siloxane materials on polypropylene (PP) and PSF supports. PP was tested as a support for composite membranes, which had not been used so far in solution coating process, and plasma polymerization made the composite membranes equivalent performances to those of membranes prepared by solution coating process.

Resourcing of Methane in the Biogas Using Membrane Process (분리막을 이용한 바이오가스의 메탄 자원화)

  • Park, Young G.;Yang, Youngsun
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.406-414
    • /
    • 2014
  • Biogas is a gaseous mixture produced from microbial digestion of organic materials in the absence of oxygen. Raw biogas, depending upon organic materials, digestion time and process conditions, contains about 45-75% methane, 30-50% carbon dioxide, 0.3% of hydrogen sulfide gas and fraction of water vapor. To achieve the standard composition of the biogas the treatment techniques like absorption or membrane separation was performed for the resourcing of biogas. In this paper the experimental results of the methane purification in simulated biogas mixture consisted of methane, carbon dioxide and hydrogen sulfide were presented. The composite membrane is manufactured within polysulfone in order to increase the separation performances for the gaseous mixtures of $CO_2$ and $CH_4$ which are main components of the biogas. The effects of feed pressures and mixed gas on the separation of $CO_2-CH_4$ by membrane are investigated. Chelate chemical was utilized to treat the purification of methane from the $H_2S$ concentration of 0.3%.

Effect of Iodine-coated Bipolar Plates on the Performance of a Polymer Exchange Membrane (PEM) Fuel Cell (고분자 전해질 막 연료전지에서의 아이오딘이 코팅된 분리판의 성능 효과)

  • Kim, Taeeon;Juon, Some;Cho, Kwangyeon;Shul, Yonggun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.61-69
    • /
    • 2013
  • Polymer exchange membrane (PEM) fuel cells have multifunctional properties, and bipolar plates are one of the key components in these fuel cells. Generally, a bipolar plate has a gas flow path for hydrogen and oxygen liberated at the anode and cathode, respectively. In this study, the influence of iodine applied to a bipolar plate was investigated. Accordingly, we compared bipolar plates with and without iodine coating, and the performances of these plates were evaluated under operating conditions of $75^{\circ}C$ and 100% relative humidity. The membrane and platinum-carbon layer were affected by the iodine-coated bipolar plate. Bipolar plates coated with iodine and a membrane-electrode assembly (MEA) were investigated by electron probe microanalyzer (EPMA) and energy-dispersive x-ray spectroscopy (EDS) analysis. Polarization curves showed that the performance of a coated bipolar plate is approximately 19% higher than that of a plate without coating. Moreover, electrochemical impedance spectroscopy (EIS) analysis revealed that charge transfer resistance and membrane resistance decreased with the influence of the iodine charge transfer complex for fuel cells on the performance.

Filtration Characteristics of Paticulate Matter at Bag Filters Coated with PTFE Membrane During Off-Line Pulsing (PTFE membrane이 코팅된 여과백의 off-line 탈진시 미세먼지 집진 특성)

  • Kim, Joung-Hun;Moon, Il-Shik;Hwang, Min-Young;Kim, Ryang-Gyoon;Ko, Daekwun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.7
    • /
    • pp.391-402
    • /
    • 2017
  • Particulate matter becomes an important issue in the environmental society recently so that it is necessary to evaluate that the commercial application of baghouse systems for effective control of fine particulates is viable. A laboratory-scale baghouse experimental apparatus with filter bags made of PTFE felt or PTFE felt coated with PTFE membrane is used to investigate the filtration performances of fine particulates. Experiments by changing filtration velocity, inlet dust concentration, and average dust particle size show that the dust collection efficiency becomes higher at lower filtration velocity, higher inlet dust concentration and larger average dust particle size. The total pressure drop through the filter media and dust layer becomes higher at higher filtration velocity and higher inlet dust concentration. The dust collection efficiency is higher and the pressure drop is lower at a baghouse with filter bags coated with PTFE membrane than that without membrane coating. From the result that the dust collection efficiency of $PM_{2.5}$ in a reasonable filtration velocity range during off-line pulsing at a baghouse with PTFE felt bag filters coated with PTFE membrane is as high as 99.99%, it is confirmed that the use of baghouse is an effective measure to control the fine particulates.

A Study on Process Performances of Continuous Electrodeionization with a Bipolar Membrane for Water Softening and Electric Regeneration (바이폴라막을 이용한 연수용 전기탈이온의 공정 효율 및 전기적 재생에 관한 연구)

  • Moon, Seung-Hyeon;Hong, Min-Kyoung;Han, Sang-Don;Lee, Hong-Joo
    • Membrane Journal
    • /
    • v.17 no.3
    • /
    • pp.210-218
    • /
    • 2007
  • CEDI-BPM(Continuous Electrodeionization-Bipolar Membrane) has advantages due to high ion permselectivity through ion exchange membranes and the production of $H^+$ and $OH^-$ ions on the bipolar membrane surfaces for regeneration of ion exchange resin during electrodeionization operation. In this study, hardness materials were removed by the CEDI-BPM without scale formation and the ion exchange resins were electrically regenerated during the operation. The adsorption characteristic of ion exchange resin surface, the influence of flow rate on the hardness removal and electric regeneration were investigated in the study. The removal efficiency of Ca was higher than that of Mg in the CEDI-BPM, which was related to the high adsorption capacity of Ca on the cation exchange resin. With increasing flow rate, the flux of Ca and Mg was enhanced by the permselectivity of a cation exchange membrane. In the electric regeneration of CEDI-BPM, it was shown that the regeneration efficiency was higher with a lower regeneration potential applied between cathode and anode.

Studies on the Removal of Volatile Organic Compounds in Wastewater using PTMSP/PDMS-PEI Composite Membrane by Pervaporation (PTMSP/PDMS-PEI 복합막을 이용한 폐수중의 휘발성 유기화합물 제거에 관한 연구)

  • Kweon, Chang-Oh;Paik, Gwi-Chan;Chun, Kyung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3532-3540
    • /
    • 2011
  • In order to improve flux of PTMSP/PDMS dense membrane, PTMSP/PDMS-PEI composite membrane with PEI support was prepared by phase inversion process and dip coating. These membranes were evaluated in terms of the removal of volatile organic compounds such as PCE, TCE, chloroform, 1,1,1-trichloroethane from wastewater by pervaporation. The selectivity and flux of PTMSP/PDMS dense membranes was in the range of 216.2 to 2394.4 and 244.3 to 428.2g/m2h, respectively. And pervaporation property of PTMSP/PDMS-PEI composite membrane was in the range of 215.5 to 2404.2 and 390.4 to 728.6g/m2h, respectively. PTMSP/PDMS-PEI composite membrane has remarkably greater flux than dense membranes with similar selectivity. It was possible for polymeric membranes used in this study to remove PCE selectively which is dissolved small quantity in water among other separable solutes. PTMSP/PDMS-PEI composite membrane showed the best performances among the silicone polymeric membranes, and has better durability and mechanical strength than dense membranes. PTMSP/PDMS-PEI composite membrane should be a useful candidate for the removal of volatile organic compounds dissolved in wastewater.

MXene Based Composite Membrane for Water Purification and Power Generation: A Review (정수 및 발전을 위한 맥신(MXene) 복합막에 관한 고찰)

  • Seohyun Kim;Rajkumar Patel
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.181-190
    • /
    • 2023
  • Wastewater purification is one of the most important techniques for controlling environmental pollution and fulfilling the demand for freshwater supply. Various technologies, such as different types of distillations and reverse osmosis processes, need higher energy input. Capacitive deionization (CDI) is an alternative method in which power consumption is deficient and works on the supercapacitor principle. Research is going on to improve the electrode materials to improve the efficiency of the process. A reverse electrodialysis (RED) is the most commonly used desalination technology and osmotic power generator. Among many studies conducted to enhance the efficiency of RED, MXene, as an ion exchange membrane (IEM) and 2D nanofluidic channels in IEM, is rising as a promising way to improve the physical and electrochemical properties of RED. It is used alone and other polymeric materials are mixed with MXene to enhance the performance of the membrane further. The maximum desalination performances of MXene with preconditioning, Ti3C2Tx, Nafion, and hetero-structures were respectively measured, proving the potential of MXene for a promising material in the desalination industry. In terms of osmotic power generating via RED, adopting MXene as asymmetric nanofluidic ion channels in IEM significantly improved the maximum osmotic output power density, most of them surpassing the commercialization benchmark, 5 Wm-2. By connecting the number of unit cells, the output voltage reaches the point where it can directly power the electronic devices without any intermediate aid. The studies around MXene have significantly increased in recent years, yet there is more to be revealed about the application of MXene in the membrane and osmotic power-generating industry. This review discusses the electrodialysis process based on MXene composite membrane.

Use of a Combined Photocatalysis/Microfiltration System for Natural Organic Matter Removal (광촉매 반응과 침지형 정밀여과를 이용한 자연산 유기물의 제거)

  • 추광호;박경원;김문현
    • Membrane Journal
    • /
    • v.14 no.2
    • /
    • pp.149-156
    • /
    • 2004
  • This work focused on the degradation of natural organic matter (NOM) present in lake water using a combined pkotocatalysisimicrofiltration (MF) process. The system performances were investigated in terms of organic removal efficiency and membrane permeability. The addition of iron oxide particles (IOP) into the photocatalytic membrane reactor improved initial NOM removal by sorption, but during photocatalysis the removal efficiency was reversed, probably due to the scattering of UV light by IOP. The modification of TiO$_2$ surfaces by IOP deposition was conducted to enhance the photocatalytic NOM removal efficiency. A minimal amount of Impregnation of IOP on TiO$_2$ surfaces was required to prevent the light scattering effect as well. The coating of MF membranes with IOP helped to improve the NOM removal efficiency while sorbing NOM by IOP. Regardless of tile operating conditions and particles addition examined, no significant fouling was occurring at a flux of 15 L/$m^2$-h during entire MF operation.