• 제목/요약/키워드: membrane performance

검색결과 1,790건 처리시간 0.119초

막재료의 난연 및 방염성능 실험에 대한 연구 (Tests of Fire and Flame Retardant Performance for Membrane Materials)

  • 김기철;최광호
    • 한국공간구조학회논문집
    • /
    • 제16권2호
    • /
    • pp.55-60
    • /
    • 2016
  • The Membrane structure has a number of problems in the application of a fireproof code based on general buildings codes. Thus, the fireproof code of membrane structure is necessary to activate the construction of the membrane structure. Because it requires a systematic classification of fire retardant and flame proof performance of membrane material. Fire retardant and flame proof tests are conducted on membrane materials mostly used in current construction to propose the fire and flame retardant performance criteria of membrane materials. Fire and flame retardant tests results, PTFE membrane material with the glass fiber fabric have a limit-combustible performance. PVDF membrane material with the polyester fabric does not ensure the fire retardant performance, but this membrane material has the flame retardant performance of a thick fabric. Also, ETFE does not ensure the fire retardant performance, but this membrane material has the flame retardant of a thin fabric.

고분자 전해질 연료전지의 전해질 막 두께가 내구성과 성능에 미치는 영향 (The Effect of Membrane Thickness on Durability and Performance of Proton Exchange Membrane Fuel Cell)

  • 황병찬;이혜리;박권필
    • Korean Chemical Engineering Research
    • /
    • 제55권4호
    • /
    • pp.473-477
    • /
    • 2017
  • 고분자 전해질 연료전지(PEMFC)의 고분자 막은 PEMFC 성능과 내구성에 많은 영향을 준다. 본 연구에서는 고분자막의 두께가 성능과 내구성에 미치는 영향을 파악하기 위해 두께가 다른 Nafion 막의 수소투과도, 불소 유출 속도(FER), 수명, 성능을 측정했다. 막 두께에 따른 수소투과도, 수소투과도와 FER과의 관계, FER과 수명과의 관계로부터 막 두께와 수명의 관계를 얻었다. 막이 두꺼워지면 수소투과도와 FER이 작아지면서 수명이 증가하였다. 반면에 막이 두꺼워지면 막 저항이 증가하면서 성능은 감소하였다. 성능과 내구성을 동시에 만족시키는 막 두께 범위는 $25{\sim}28{\mu}m$였다.

역삼투막 재료

  • 김창근
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1998년도 심포지움시리즈 Jan-98 역삼투용 분리막 기술 및 응용
    • /
    • pp.31-55
    • /
    • 1998
  • 1. Performance of RO membrane depends on chain structure (packing density) 2. Crosslinking of main chain is essential for the high performance RO membranes 3. Various bisphenols and polyaminostyrene can be promising materials for the fabrication of RO membranes. 4. By using of blend technique of reactant, we can expect broad spectrum of RO membrane and synergetic effects in membrane performance.

  • PDF

Performance Evaluation of Platinum Dispersed Self-humidifying Polymer Electrolyte Membrane Prepared by Using RF Magnetron Sputter

  • Kwak, Sang-Hee;Yang, Tae-Hyun;Kim, Chang-Soo;Yoon, Ki-Hyun
    • 한국세라믹학회지
    • /
    • 제40권2호
    • /
    • pp.118-122
    • /
    • 2003
  • The performance evaluation on Pt loading in the self-humidifying polymer electrolyte membrane for Polymer Electrolyte Mem-Brane Fuel Cell(PEMFC) was investigated by using single cell test and measurement of membrane resistance. The self-humidifying membrane comprised two membranes made of perfluorosulfonylfluroride copolymer resin and fine Pt particles tying between them, coated by sputtering. From the results of performance characteristics of self-humidifying membrane cell with different Pt loading, a single cell using self-humidifying membrane with 0.15 mg/$\textrm{cm}^2$ Pt loading showed better performance than that with the others over entire current density. Also, a single cell with 0.15 mg/$\textrm{cm}^2$ Pt loading had a lower resistance value than the other cells under externally nonhumidifying condition. It is indicated that the water produced in the membrane cell with 0.15 mg/$\textrm{cm}^2$ Pt loading showed a higher provision to maintain ionic conductivity of the membrane than the other cells. The optimum amount of Pt particles embedded in the membrane for self-humidifying PEMFC was determined to be about 0.15 mg/$\textrm{cm}^2$.

고분자전해질연료전지용 판형막가습기 성능 평가 (Performance Evaluation of a Plate-Type Membrane Humidifier for PEMFC)

  • 고백균;박종철;한인수;신현길;허태욱;조성백
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.98.2-98.2
    • /
    • 2011
  • For optimal performance of a proton exchange membrane fuel cell (PEMFC), the membrane electrode assembly (MEA) requires hydration, and the membrane's conductivity depends on water content. A humidifier is required to ensure that the reactant gas, usually hydrogen and air, is hydrated before entering the fuel cell. Dry membrane operation or improper hydration causes performance degradation. Typically, the humidification of a fuel cell is carried out by means of an internal or external humidifier. A membrane humidifier is applied to the external humidification of transportation or residential power generation fuel cell due to its convenience and high performance. In this study, The experiments were constructed with a plate-type membrane humidifier in terms of geometric parameters and operating parameters. The results show that the temperature and pressure, the channel length, the membrane thickness and gas flow rate are critical parameters affecting the performance of the humidifier.

  • PDF

Preparation of high-performance nanofiltration membrane with antioxidant properties

  • Yu, Feiyue;Zhang, Qinglei;Pei, Zhiqiang;Li, Xi;Yang, Xuexuan;Lu, Yanbin
    • Membrane and Water Treatment
    • /
    • 제13권4호
    • /
    • pp.191-199
    • /
    • 2022
  • In industrial production, the development of traditional polyamide nanofiltration (NF) membrane was limited due to its poor oxidation resistance, complex preparation process and high cost. In this study, a composite NF membrane with high flux, high separation performance, high oxidation resistance and simple process preparation was prepared by the method of dilute solution dip coating. And the sulfonated polysulfone was used for dip coating. The results indicated that the concentration of glycerin, the pore size of the based membrane, the composition of the coating solution, and the post-treatment process had important effects on the structure and performance of the composite NF membrane. The composite NF membrane prepared without glycerol protecting based membrane had a low flux, when the concentration of glycerin increased from 5% to 15%, the pure water flux of the composite NF membrane increased from 46.4 LMH to 108.2 LMH, and the salt rejection rate did not change much. By optimizing the coating system, the rejection rate of Na2SO4 and PEG1000 was higher than 90%, the pure water flux was higher than 40 LMH (60psi), and it can withstand 20,000 ppm.h NaClO solution cleaning. When the post treatment processes was adjusted, the salt rejection rate of NaCl solution (250 ppm) reached 45.5%, and the flux reached 62.2 LMH.

초음파를 이용한 한외여과의 성능 향상 (Enhancement of Ultrafiltration Performance Using Ultrasound)

  • 염경호;육영재
    • 멤브레인
    • /
    • 제13권4호
    • /
    • pp.283-290
    • /
    • 2003
  • BSA 용액을 대상으로 한 dead-end 및 cross-flow 한외여과에서 막모듈에의 초음파 조사가 막성능 향상에 미치는 효과를 연구하였다. 이 결과 막모듈에의 간헐적 또는 연속적 초음파 조사는 막오염의 형성 억제 및 막오염 층의 제거에 상당한 효과가 있음이 확인되었다. 초음파 조사에 의한 막성능 향상 효과는 막오염을 크게 유발시키는 운전조건(도입액 농도와 TMP가 높고, 유량이 낮은 운전조건)일수록 더 컸으며, 막모듈에 초음파를 조사시키면 조사시키지 않은 경우와 비교할 때 dead-end 한외여과에서는 최대 약 1.9배, cross-flow 한외여과에서는 최대 약 1.5배의 투과플럭스 향상을 얻을 수 있었다.

중공사형 질소 분리막 모듈의 최적 선정과 유량특성에 관한 연구 (A Study on Flow Rate Properties and Optimal Selection of Nitrogen Membrane Module of Hollow Fiber Type)

  • 김종도;이상수;김전하
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권6호
    • /
    • pp.915-922
    • /
    • 2008
  • The gas separation technology using membrane is widely used to refine various gases in many industry fields and recently is being applying in $CO_2$ recovery technology. In the gas and chemical tanker. nitrogen generators for inerting, purging and padding are on board and most of them have membrane modules of hollow fiber type with long life and vibration resisting properties. Because a membrane module is a key component accounting for 50% of total manufacturing cost of nitrogen generator, adequate selection for it is an important problem. In this paper, the flow performance coefficient based on dimension and specification data of membrane module was relatively selected to compare nitrogen generating capacity of module and various performance tests about the selected PARKER ST6010 membrane module were conducted. As a result, the useful coefficient and basic data in selecting a membrane module were achieved.

A novel approach to bind graphene oxide to polyamide for making high performance Reverse Osmosis membrane

  • Raval, Hiren D.;Das, Ravi Kiran
    • Membrane and Water Treatment
    • /
    • 제8권6호
    • /
    • pp.613-623
    • /
    • 2017
  • We report the novel thin film composite RO membrane modified by graphene oxide. The thin film composite RO membrane was exposed to 2000 mg/l sodium hypochloride; thereafter it was subjected to different graphene oxide concentration ranging from 50 mg/l to 1000 mg/l in water. The resultant membrane was crosslinked with 5000 mg/l N-hydroxysuccinimide. The performance of different membranes were analysed by solute rejection and water-flux measurement. It was found that 100 mg/l graphene oxide exposure followed by 5000 mg/l N-hydroxysuccinimide treatment resulted in the membrane with the highest solute rejection of 97.78% and water-flux of 4.64 Liter per sqm per hour per bar g. The membranes were characterized by contact angle for hydrophilicity, scanning electron micrographs for surface morphology, energy dispersive X-Ray for chemical composition of the surface, Atomic force microscope for surface roughness, ATR-FTIR for chemical structure identification. It was found that the graphene oxide modified membrane increases the salt rejection performance after exposure to high-fouling water containing albumin. Highly hydrophilic, antifouling surface formation with the nanomaterial led to the improved membrane performance. Moreover, the protocol of incorporating nanomaterial by this post-treatment is simple and can be applied to any RO membrane after it is manufactured.

이산화탄소 분리를 위한 중공사막 모듈에서의 물질전달 거동 (On the Mass Transfer Behaviors in Hollcw-Fiber Membrane Modules for $CO_2$ Separation)

  • 전명석;김영목;이규호
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1994년도 춘계 총회 및 학술발표회
    • /
    • pp.51-52
    • /
    • 1994
  • High permeability, selectivity and stability are the basic properties also required for membrane gas separations. The $CO_2$ separation by liquid membranes has been developed as a new technique to improve the permeability and selectivity of polymeric membranes. Sirkar et al.(1) have atlempted the hollow-fiber contained liquid membrane technique under four different operational modes, and permeation models have been proposed for all modes. Compared to a conventional liquid membrane, the diffusional resistance decreased by the work of Teramoto et al.(2), who referred to a moving liquid membrane. Recently, Shelekhin and Beckman (3) considered the possibility of combining absorption and membrane separation processes in one integrated system called a membrane absorber. Their analysis could be predicted effectively the performance of flat sheet membrane, however, there are restrictions for considering a flow effect. The gas absorption rate is determined by both an interfacial area and a mass transfer coefficient. It can be easily understood that although the mass transfer coefficients in hollow fiber modules are smaller than in conventional contactors, the substantial increase of the interfacial area can result in a more efficient absorber (4). In order to predict a performance in the general system of hollow-fiber membrane absorber, a gas-liquid mass transfor should be investigated inevitably. The influence of liquid velocity on both a mass transfer and a performance will be described, and then compared with experimental results. A present study is attempted to provide the fundamentals for understanding aspects of promising a hollow-fiber membrane absorber.

  • PDF