• Title/Summary/Keyword: membrane integrity

Search Result 271, Processing Time 0.027 seconds

The antioxidant roles of L-carnitine and N-acetyl cysteine against oxidative stress on human sperm functional parameters during vitrification

  • Ghorbani, Fatemeh;Nasiri, Zohreh;Koohestanidehaghi, Yeganeh;Lorian, Keivan
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.4
    • /
    • pp.316-321
    • /
    • 2021
  • Objective: Amino acids can protect sperm structure in cryopreservation due to their antioxidant properties. Therefore, the present study aimed to investigate the protective effect of L-carnitine (LC) and N-acetyl cysteine (NAC) on motility parameters, plasma membrane integrity (PMI), mitochondrial membrane potential (MMP), DNA damage, and human sperm intracellular reactive oxygen species (ROS) during vitrification. Methods: Twenty normal human sperm samples were examined. Each sample was divided into six equal groups: LC (1 and 10 mM), NAC (5 and 10 mM), and cryopreserved and fresh control groups. Results: The groups treated with LC and NAC showed favorable findings in terms of motility parameters, DNA damage, and MMP. Significantly higher levels of intracellular ROS were observed in all cryopreserved groups than in the fresh group (p≤0.05). The presence of LC and NAC at both concentrations caused an increase in PMI, MMP, and progressive motility parameters, as well as a significant reduction in intracellular ROS compared to the control group (p≤0.05). The concentrations of the amino acids did not show any significant effect. Conclusion: LC and NAC are promising as potential additives in sperm cryopreservation.

Stabilization of Membrane Proteins by Benzyladenine during Wheat Leaf Senescence (노쇠중인 밀잎에서 Benzyladenine에 의한 막단백질의 안정화)

  • 진창덕
    • Journal of Plant Biology
    • /
    • v.35 no.2
    • /
    • pp.117-123
    • /
    • 1992
  • The effect of benzyladenine (BA) on lipid peroxidation and compositions of total insoluble proteins and chloroplast thylakoid protein from wheat primary leaves during senescence in the dark was studied. BA ($10^{-5}\;M$) treatment prevented conspicuously the loss of chlorophyll content and soluble and insoluble leaf protein contents in senescing wheat leaf segments during 4-day dark incubation. Under the BA treatment, especially, the level of insoluble protein was highly maintained than that of soluble protein. Also, the increase of malondialdehyde (MDA: the peroxidation product of membrane lipids) content was inhibited in the BA treated leaves. Three major polypeptide bands in quantity corresponding to 57, 26 and 12 KD molecular weight were clearly resolved with other minor bands by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) in the insoluble protein fraction. The insoluble protein profiles of the control leaves showed a remarkable decrease in the intensity of the 57 and 12 KD band except for 26 KD band in the 72 h dark incubation. This loss during dark incubation was reduced by BA treatment. More than 20 polypeptides were resolved in the chloroplast thylakoid membrane fraction with the most prominent bands which are 59 and 57 KD ($\alpha\;and\;\beta$ subunit of coupling factor: CF) and 26 KD (apoprotein of LHCP). The changes in thylakoid protein profile during 72 h dark incubation showed the rapid degradation in control, but this degradation was prevented in quantity by BA treatment. The above results suggested that BA would inhibit the peroxidation of membrane lipids, thereby preventing the loss of membrane proteins which led to the maintenance of the membrane integrity including chloroplast thylakoid.

  • PDF

Effect of Nitric Oxide on the Sinusoidal Uptake of Organic Cations and Anions by Isolated Hepatocytes

  • Song, Im-Sook;Lee, In-Kyoung;Chung, Suk-Jae;Kim, Sang-Geon;Lee, Myung-Gull;Shim, Chang-Koo
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.984-988
    • /
    • 2002
  • The issue of whether or not the presence NOx (NO and oxidized metabolites) in the hepatocytes at pathological levels affects the functional activity of transport systems within the sinusoidal membrane was investigated. For this purpose, the effect of the pretreatment of isolated hepatocytes with sodium nitroprusside (SNP), a spontaneous NO donor, on the sinusoidal uptake of tributylmethylammonium (TBuMA) and triethylmethyl ammonium (TEMA), representative substrates of the organic cation transporter (OCT), and taurocholate, a representative substrate of the $Na^+$/taurocholate cotransporting polypeptide (NTCP), was measured. The uptake of TBuMA and TEMA was not affected by the pretreatment, as demonstrated by the nearly identical kinetic parameters for the uptake ($i.e., V_{max}, K_{m} and CL_{linear}$). The uptake of mannitol into hepatocytes was not affected, demonstrating that the membrane integrity remained constant, irregardless of the SNP prutreatment. On the contrary, the uptake of taurocholate was significantly inhibited by the pretreatment, resulting in a significant decrease in V_{max}$, thus providing a clear demonstration that NOx preferentially affects the function of NTCP rather than OCT on the sinusoidal membrane. A direct interaction between NOx and NTCP or a decrease in $Na^+/K^+$ ATPase activity as the result of SNP pretreatment might be responsible for this selective effect of NOx.

Differential Recovery of Photosystem II Complex from Low-Temperature Photoinhibition in Plants with Different Chilling Sensitivity

  • Moon, Byoung-Yong;Norio Murata
    • Journal of Photoscience
    • /
    • v.7 no.2
    • /
    • pp.39-44
    • /
    • 2000
  • To examine the chilling tolerance lipids, we compared the chilling susceptibility of photosystem II of wild type tobacco plants with that of transgenic tobacco plants, in which the sensitivity to chilling had been enhanced by genetic modification of fatty acid unsaturation of chloroplast membrane lipids. The transgenic tobacco plants were found to contain reduced levels of unsaturated membrane fatty acids by being tansformed with cDNA for glycerol-3-phosphate acyltransferase from squash. For the purpose of studying on the functional integrity of photosystem II during low-temperature photoinhibition, the photochemical efficiency was measured as the ration of the maximun fluorescence of chlorophyll (Fv/Fm) of photosystem II. In parallel with an investigation on the transgenic plants, susceptibility of chilling-resistant species, such as spinah and pea, and of chilling-sensitive ones, such as squash and sweet potato, to low-temperature photoinhibition was also compared in terms of room temperature-induced chlorophyll fluorescence from photosystem II. When leaf disks from the two genotypes of tobacco plants were exposed to light at 5$^{\circ}C$, the transgenic plants showed more rapid decline in photochemical activity of photosysytme II than wild-type plants. When they were pretreated with lincomycin, an inhibitor of chloroplast-encoded protein synthesis, the extent of photoinhibition was even more accelerated. More impottantly, they showed a comparable extent of photoinhibition in the presence of lincomycin, making a clear contrast to the discrepancy observed in the discrepancy observed in the absence of lincomycin. Restoration of Fv/Fm during recovery from low-temperature photoinhibition occurred more slowly in the transgenic tobacco plants than the wild-type. These findings are discussed in relation to fatty acid unsaturation of membrane phosphatidylglycerol. It appears that the ability of plants to rapidly regenerate the active photosystem II complex from might explain, in part, why chilling-resistant plants can toleratlow-temperature photoinhibition.

  • PDF

Fucoidan Induces Apoptosis in A2058 Cells through ROS-exposed Activation of MAPKs Signaling Pathway

  • Ryu, Yea Seong;Hyun, Jin Won;Chung, Ha Sook
    • Natural Product Sciences
    • /
    • v.26 no.3
    • /
    • pp.191-199
    • /
    • 2020
  • Fucoidan, a natural component of brown seaweed, has various biological activities such as anti-cancer activity, anti-oxidant, and anti-inflammatory against various cancer cells. However, the fucoidan has been implicated in melanoma cells via apoptosis signaling pathway. Therefore, we investigated apoptosis with fucoidan in A2058 human melanoma cells with dose- and time-dependent manners. In our results, A2058 cells viability decreased at relatively short-time and low-concentration through fucoidan. This effects of fucoidan on A2058 cells appeared to be mediated by the induction of apoptosis, as manifested by morphological changes through DNA-binding dye Hoechst 33342 staining. When a dose of 80 ㎍/mL fucoidan was treated, the cells were observed: crescent or ring-like structure, chromatin condensation, and nuclear fragmentation. With the increase at 100 ㎍/mL fucoidan, the cell membrane is intact throughout the total process, including membrane blebbing and loss of membrane integrity as well as increase of sub-G1 DNA. Furthermore, to understand the exact mechanism of fucoidan-treated in A2058 cells, western blotting was performed to detect apoptosis-related protein expression. In this study, Bcl-2 family proteins can be regulated by fucoidan, suggesting that fucoidan-induced apoptosis is modulated by intrinsic pathway. Therefore, expression of Bcl-2 and Bax may result in altered permeability, activating caspase-3 and caspase-9. And the cleaved form of poly ADP-ribose polymerase was detected in fucoidan-treated A2058 cells. These results suggest that A2058 cells are highly sensitive to growth inhibition by fucoidan via apoptosis, as evidenced by activation of extracellular signal-regulated kinases/p38/Bcl-2 family signaling, as well as alteration in caspase-9 and caspase-3.

Studies on the Development and Utilization of Polyclonal Antibodies Against Swine Adipocyte Plasma Membrane Proteins (돼지 지방세포 원형질막 단백질에 대한 다클론항체의 생산 및 이용에 관한 연구)

  • Baek, K.H.;Kwak, T.H.;Oh, Y.S.;Choi, C.W.;Jung, K.K.;Choi, Chang-Bon
    • Journal of Animal Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.19-28
    • /
    • 2005
  • The objectives of the current study were to develop polyclonal antibodies in sheep against adipocyte plasma membrane(APM) proteins isolated from swine, to investigate tissue specificity, and to determine cytotoxic effects of antiserum on swine adipocytes. Plasma membrane proteins from adipocyte, brain, heart, kidney, liver, and spleen were isolated using a 32% sucrose gradient. Adult male sheep was immunized three times at three week interval with the purified swine APM proteins. Antiserum was taken from immunized sheep at 10, 12, and 14 days after the third immunization. Antiserum expressed strong reactivity with APM proteins determined by enzyme-linked immunosorbent assay(ELISA), and the reactivity could be detected at dilutions in excess of 1 : 81,000. Antiserum showed very low binding affinity with proteins isolated from brain, heart, kidney, liver, or spleen. Tissue specificity of the antiserum was reconfirmed by Western immunoblotting using anti-sheep immunoglobulin G•alkalinephosphatase conjugate as a secondary antibody. The reactivity of antiserum to the external surface of fixed swine adipocytes was confmned by an immunohistochemical technique using anti-sheep immunoglobulin G-FITC. Confluent swine adipocytes in culture were lysed by antiserum treatment and cytosolie lactate dehydrogenase(LDH) was released as a dose-dependent patterns while adipocytes treated with normal sheep serum maintained their integrity and expressed low level of LDH. These results implicate that fat contents in the pigs can be reduced by immunological methods.

Effect of Fructose-1,6-diphosphate[FDP] on Red Blood Cells after Extracorporeal Circulation (체외순환후 fructose-1,6-diphosphatate[FDP]가 적혈구에 미치는 영향)

  • 이정렬
    • Journal of Chest Surgery
    • /
    • v.25 no.7
    • /
    • pp.693-701
    • /
    • 1992
  • Extracorporeal cardiopulmonary bypass[CPB] has been associated with a wide variety of hematologic derangements, including a transient deformation and hemolysis of red blood cells[RBCs], which is supposed to be due to mechanical trauma and/or metabolic alterations. Since membrane integrity is, in part, maintained by energy requiring process, inadequate function of erythrocyte glycolytic pathway, which is inevitalble during CPB, may cause depletion of high energy phosphate pool and result in hemolysis. The authors performed an investigation to assess whether administration of Fructose-l, 6-diphsphate [FDP], which has been known to enhance intracellular glycolytic activities, could counteract erythrocyte hemolytic events caused by CPB. Sixty pateints with cyanotic congenital heart diseases, who underwent open heart surgery under CPB longer than 60 minutes, were randomly divided into two groups depending on whether use of FDP[Group FDP] or not[Group Control]. The age, sex, CPB time, preoperative hemoglobin level, disease entities were all similar[Table 1], and membrane type oxygenators were used in all patients. In Group, FDP, a dose of 250mg/kg body weight of FDP was administered by intravenous dripping every 12 hours from the morning of the operation to postoperative 48 hours, To demonstrate the degree and pattern of hemolysis of erythrocyte, reticulocyte count, indirect /direct bilirubin, haptoglobin, plasma hemoglobin, lactate dehydrogenase were measured every 12 hours from the time of cessation of CPB to 48 hours and RBC morphologic study, osmotic fragility test were done every 24 hours. All parameters revealed less hemolytic in group FDP [Fig. 1~5], though the differences between two groups were not significant, except plasma hemoglobin, lactate dehydrogenase changes. A pattern of sequential changes of plasma hemoglobin, lactate deh-ydrogenase showed the highest level at the time of CPB stop and abrupt decrease in following 24 hours in both groups, and statistically significant differences were demonstrated in group FDP at least for the first 12 hours postoperatively[p<0.05]. The authors conclude that they can expect the benificial effect of FDP on the maintenance of membrane stability of RBC probably by energy enhancement during the shock status of CPB, but FDP could not completely prevent the damaging effect on RBC by cardiopulmonary bypass

  • PDF

Antioxidant activity and metabolic regulation of sodium salicylate on goat sperm at low temperature

  • Wenzheng Shen;Yu Fu;Haiyu Bai;Zhiyu Zhang;Zhikun Cao;Zibo Liu;Chao Yang;Shixin Sun;Lei Wang;Chunhuan Ren;Yinghui Ling;Zijun Zhang;Hongguo Cao
    • Animal Bioscience
    • /
    • v.37 no.4
    • /
    • pp.640-654
    • /
    • 2024
  • Objective: The purpose of this study was to explore the effect of sodium salicylate (SS) on semen preservation and metabolic regulation in goats. Methods: Under the condition of low temperature, SS was added to goat semen diluent to detect goat sperm motility, plasma membrane, acrosome, antioxidant capacity, mitochondrial membrane potential (MMP) and metabonomics. Results: The results show that at the 8th day of low-temperature storage, the sperm motility of the 20 μM SS group was 66.64%, and the integrity rates of the plasma membrane and acrosome were both above 60%, significantly higher than those of the other groups. The activities of catalase and superoxide dismutase in the sperm of the 20 μM SS group were significantly higher than those of the control group, the contents of reactive oxygen species and malondialdehyde were significantly lower than those in the control group, the MMP was significantly higher than that in the control group, and the contents of Ca2+ and total cholesterol were significantly higher than those in the control group. Through metabonomics analysis, there were significant metabolic differences between the control group and the 20 μM SS group. Twenty of the most significant metabolic markers were screened, mainly involving five metabolic pathways, of which nicotinic acid and nicotinamide metabolic pathways were the most significant. Conclusion: The results indicate that SS can effectively improve the low-temperature preservation quality of goat sperm.

LGMD2E with a novel nonsense variant in SGCB gene: a case of LGMD2E with a novel variant

  • La, Yun Kyung;Oh, Eun Kyoung;Lyou, Hyun Ji;Hong, Ji Man;Choi, Young-Chul
    • Annals of Clinical Neurophysiology
    • /
    • v.22 no.1
    • /
    • pp.29-32
    • /
    • 2020
  • Sarcoglycanopathies are a rare group of autosomal recessive limb-girdle muscular dystrophies (LGMDs) caused by genetic variants in α-, β-, γ-, or δ-sarcoglycan that maintain membrane integrity and contribute to molecular signal processing. High-throughput nucleotide sequencing was performed in patients with slowly progressive proximal muscle weakness from early childhood with respiratory involvement, which detected a novel homozygous nonsense variant (c.601C>T;p.Gln201Ter) in SGCB. This report informs about the clinical characteristics of LGMD2E (type-2E LGMD) in Korea and provides genetic confirmation of the disease.

Neuroprotective Effect of Scopoletin from Angelica dahurica on Oxygen and Glucose Deprivation-exposed Rat Organotypic Hippocampal Slice Culture

  • Son, Dong-Wook;Lee, Pyeong-Jae;Lee, Jong-Seok;Lee, Sang-Hyun;Choi, Sang-Yoon;Lee, Jong-Won;Kim, Sun-Yeou
    • Food Science and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.632-635
    • /
    • 2007
  • This study examined the neuroprotective effect of scopoletin from Angelica dahurica against oxygen and glucose deprivation-induced neurotoxicity in a rat organotypic hippocampal slice culture. Scopoletin reduced the propidium iodide (PI) uptake, which is an indication of impaired cell membrane integrity. In addition, it inhibited the loss of NeuN, which represents the viability of neuronal cells. The results suggests that scopoletin from A. dahurica protects neuronal cells from the damage caused by oxygen and glucose deprivation.