• Title/Summary/Keyword: membrane function

Search Result 977, Processing Time 0.024 seconds

Mass Spectrometry-based Comparative Analysis of Membrane Protein: High-speed Centrifuge Method Versus Reagent-based Method (질량분석기를 활용한 막 단백질 비교분석: High-speed Centrifuge법과 Reagent-based법)

  • Lee, Jiyeong;Seok, Ae Eun;Park, Arum;Mun, Sora;Kang, Hee-Gyoo
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.1
    • /
    • pp.78-85
    • /
    • 2019
  • Membrane proteins are involved in many common diseases, including heart disease and cancer. In various disease states, such as cancer, abnormal signaling pathways that are related to the membrane proteins cause the cells to divide out of control and the expression of membrane proteins can be altered. Membrane proteins have the hydrophobic environment of a lipid bilayer, which makes an analysis of the membrane proteins notoriously difficult. Therefore, this study evaluated the efficacy of two different methods for optimal membrane protein extraction. High-speed centrifuge and reagent-based method with a -/+ filter aided sample preparation (FASP) were compared. As a result, the high-speed centrifuge method is quite effective in analyzing the mitochondrial inner membranes, while the reagent-based method is useful for endoplasmic reticulum membrane analysis. In addition, the function of the membrane proteins extracted from the two methods were analyzed using GeneGo software. GO processes showed that the endoplasmic reticulum-related responses had higher significance in the reagent-based method. An analysis of the process networks showed that one cluster in the high-speed centrifuge method and four clusters in the reagent-based method were visualized. In conclusion, the two methods are useful for the analysis of different subcellular membrane proteins, and are expected to assist in selecting the membrane protein extraction method by considering the target subcellular membrane proteins for study.

HYDRATION DEPENDENCE OF DRIED ORIENTED PURPLE MEMBRANE FILMS ACTIVITY

  • Lee, Ki-Hwan;Boucher, Francois;McIntosh, Alan R.
    • Journal of Photoscience
    • /
    • v.2 no.2
    • /
    • pp.69-72
    • /
    • 1995
  • Dry orderly oriented purple membrane from Halobacterium halobium was obtained by a new technique of preparation. This oriented purple membrane film was very stable, nearly permanently, and showed long term reproducibility with respect to its photochemical behavior. In addition, we have investigated the photooptical properties in terms of the M$_{412}$ intermediate of the bacteriorhodopsin photocycle with respect to the humidity of the film. The relative optical density, i.e. its apparent concentration of the M$_{412}$ intermediate was decreased with the humidity increase as a function of the intensity of the exciting flash within our experimental range. It is suggested that the bound water molecules play an important role in the structure of the bacteriorhodopsin.

  • PDF

A Novel Technoque for Characterization of Membranes

  • Webber, Ronald;Jena, Akshaya;Gupta, Krishna
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2001.10a
    • /
    • pp.39-50
    • /
    • 2001
  • The performance of membranes is governed their pore struture. Pore structures of porous materials can be determined by a number of techniques. However, The novel technique, capillary folw porometry has a number of advantages. In this technique, the sample is brought in contact with a liquid that fills the pores in the membrane spontaneously. Gas under pressure is used to force the liquid from the pores and increase gas flow. Gas flow rate measured as a function of gas pressure in wet and dry samples yield data on the largest pore size, the mean flow pore size, flow distribution and permeability. Pore characteristics of a number of membranes were measured using this technique. This technique did not require the use of any toxic material and the pressure employed was low. Capillary flow porometry is a suitable technique for measurement of the pore structure of many membranes.

  • PDF

Antimicrobial Activities of Korean Medicinal Herb Extracts for Preserving Greenhouse Fresh Produce (시설채소산물의 선도유지를 위한 한국산 약용식물추출물의 항균특성)

  • 정순경;이숙지
    • Food Science and Preservation
    • /
    • v.5 no.1
    • /
    • pp.13-21
    • /
    • 1998
  • Korean medicinal herb extracts(KMHE) were applied to the preservation of greenhouse produce in order to prove their effectiveness. KMHE showed remarkable antimicrobial effects against Bacillus cereus, Peudomonas syringae, and Corynebacterium xerosis causing the postharvest decay of greenhouse produce. Among KMHE the extracts of Rheum palmatum L. and Coptis chinensis Franch most obviously inhibited the growth of microorganims causing the Postharvest decay of greenhouse produce, which destroyed to undetectable levels when treated with more than 500ppm of KMHE. The activities of KMHE were stable in the wide spectrum of pH and temperature. Direct visualization of microbial cells by using both transmission electron microscope and scanning electron microscope showed microbial cell membrane the function of which was destroyed by treating with the dilute solutions of KMHE. This change of cellular membrane permeability could be identified in the experiment that O-nitrophenyl-$\beta$-D-galactopyranoside(ONPG), the artificial substrate of $\beta$-galactosidase, was hydrolyzed in the presence of KMHE, indicating that the membrane was perturbed by KMHE.

  • PDF

Prediction of Drawbead Restraining Force by Hybrid Membrane/Bending Method (하이브리드 박막/굽힘 방법을 이용한 드로비드력의 예측)

  • Lee, M.G.;Chung, K.;Wagoner, R.H.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.533-538
    • /
    • 2006
  • A simplified numerical procedure to predict drawbead restraining forces(DBRF) has been developed based on the hybrid membrane/bending method which superposes bending effects onto membrane solutions. As a semi-analytical method, the new approach is especially useful to analyze the effects of various constitutive parameters. The present model can accommodate general anisotropic yield functions along with non-linear isotropic-kinematic hardening under the plane strain condition. For the preliminary results, several sensitivity analyses for the process and material effects such as friction, drawbead depth, hardening behavior including the Bauschinger effect and yield surface shapes on the DBRF are carried out.

[ $Ag^+$ ]-Chitosan Complex Membranes for Propylene/Propane Separation

  • Kim, Jeong-Hoon;Lee, Soo-Bok;Feng, Xianshe
    • Korean Membrane Journal
    • /
    • v.8 no.1
    • /
    • pp.36-42
    • /
    • 2006
  • We have prepared new water-swollen chitosan-$Ag^+$ complex membranes and studied their permeation and separation behavior for propylene and propane gases. The $Ag^+$ containing chitosan complex membranes were prepared from chitosan and $AgNO_3$ aqueous solution. The $AgNO_3$ and water content in the membrane were controlled by adjusting $AgNO_3$ concentration of casting solution. The permeation properties of propylene and propane were investigated as a function of $AgNO_3$ concentration, and various operation conditions. High permeability of above 17 barrer and high selectivity of above 170 could be obtained with the membranes prepared from 3 M $AgNO_3$ aqueous solution. Periodic regeneration test confirmed these membranes could be very useful for the separation of propylene/propane and other olefin/paraffin separation.

Candidacidal Effects of Rev (11-20) Derived from HIV-1 Rev Protein

  • Lee, Juneyoung;Lee, Dong Hwan;Lee, Dong Gun
    • Molecules and Cells
    • /
    • v.28 no.4
    • /
    • pp.403-406
    • /
    • 2009
  • Rev is an essential regulatory protein for HIV-1 replication. Rev (11-20) is known as the significant region regarding the function of a nuclear entry inhibitory signal (NIS) of Rev. In this study, anticandidal effects and mechanism of action of Rev (11-20) were investigated. The result exhibited that Rev (11-20) contained candidacidal activities. To understand target site(s) of Rev (11-20), the intracellular localization of the peptide was investigated. The result showed that Rev (11-20) rapidly accumulated in the fungal cell surface. The cell wall regeneration test also indicated that Rev (11-20) exerted its anticandidal activity to fungal plasma membrane rather than cell wall. The fluorescent study using 1,6-diphenyl-1,3,5-hexatriene (DPH) further confirmed the membrane-disruption mechanism(s) of Rev (11-20). The present study suggests that Rev (11-20) possesses significant potential regarding therapeutic agents for treating fungal diseases caused by Candida species in humans.

Changes in Chloroplast Ultrastructure and Thylakoid Membrane Proteins by High Light in Ginseng Leaves

  • Woo Kap Kim
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.285-292
    • /
    • 1994
  • Ultrastructural changes in Panax ginseng C. A. Meyer mesophyll chloroplasts and variation of thylakoid membrane protein in responce to the light intensity were studied in leaves of two-y-old plants exposed to two different light intensities under field coditions. The leaves were allowed to function for three months after emergence under two contrasting light conditions. The ginseng chloroplasts of 5% light were filled with highly stacked grana of condensely arrayed thylakoids, so that the stroma space was hardly observed. In contrast, chloroplasts from leaves at 100% sunlight had fewer thylakoid membranes and smaller grana stacks. The number of osmiophilic globules increased. Total Chl content and Chl b content were lower at 100% sunlight than 5% sunlight. The thylakoid membrane proteins in the leaves grown at 100% sunlight showed lower CPIa, LHCII and CP29 than those with 5% sunlight. This effect was most obvious for LHCII. Polypeptides showed major bands at 90, 64, 29-30, 22 and 14 kD, and minor bands at 59, 58, 54, 52, 49, 46, 44, 35, 23, 21 and 18-19 kD. All these bands were lower in intensity in the leaves exposed to 100% sunlight. Moreover, the bands at 58-59, 46-47 and 23 kD disappeared.

  • PDF

Modeling and Longitudinal Vibration Analysis for an Axially Moving Membrane (축방향으로 움직이는 박막의 모델링 및 종진동해석)

  • Shin, Chang-Ho;Chung, Jin-Tai
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.613-617
    • /
    • 2001
  • The longitudinal vibration of an axially moving membrane is studied when the membrane has translating acceleration. The equation for the longitudinal vibration is linear and coupled, The equation for the longitudinal vibration are discretized by using the Galerkin approximation after they are transformed into the variational equations, i.e., the weak forms so that the admissible function can be used for the bases of the longitudinal deflection. With the discretized equations for the longitudinal vibration, the time responses are investigated by using newmark method.

  • PDF

Computational Fluid Dynamics Study on Particle Rejection in Microfiltration

  • Nakao, Shin-ichi;Goto, Tomomasa;Tanaka, Nobuyuki;Yamamoto, Atsushi;Takaba, Hiromitsu
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.15-18
    • /
    • 2004
  • Computational fluid dynamics (CFD) was applied to modeling particle dynamics in microfiltration (MF). The rejection properties of poly methylmethacrylate (PMMA) and polystyrene (PS) were calculated. Calculated rejection (R) of PMMA was independent with the porosity of the membrane, and the R was constant in the range of volume flux between $1\times 1-^{-4}-1\times 10^{-2}$ m/s. These observations were in quantity agreement with our experimental observations. The dependence of PMMA and PS rejection on the ratio of particle diameter and pore diameter were good agreement with the experimental values, which suggesting that the validity of CFD simulation to evaluate rejection of particle in MF membranes. Change of rejection of PMMA as a function of time was molded based on the CFD result which explained well the experimental observation.

  • PDF