• Title/Summary/Keyword: membrane deformability

Search Result 12, Processing Time 0.015 seconds

Effect of Amine Oxide Zwitterionic Surfactant on Characteristics of Liposome (아민 옥사이드 양쪽성 계면활성제 첨가가 리포좀 특성에 미치는 영향에 관한 연구)

  • Mo, DaHee;Lee, SuMin;Lee, JuYeon;Han, DongSung;Lim, JongChoo
    • Applied Chemistry for Engineering
    • /
    • v.27 no.3
    • /
    • pp.291-298
    • /
    • 2016
  • In this study, zwitterionic surfactants were added to liposome systems at different pH conditions to understand the effect of surfactants on liposome characteristics. For this purpose, amine oxide surfactants having different hydrocarbon chain lengths were synthesized and the structure of the resulting product was elucidated by using $^1H$ NMR, $^{13}C$ NMR, and FT-IR. In addition, the physical properties of newly synthesized surfactants such as critical micelle concentration (CMC), surface tension and isoelectric point were measured. The stability characteristics of liposome systems including average particle sizes and zeta potentials were measured by varying pH and hydrocarbon chain lengths of an amine oxide surfactant. Effects of the pH and hydrocarbon chain length of an amine oxide surfactant on fluidity of a liposome membrane were also examined by measuring the deformability and the binding degree between the surfactant and liposome.

Effect of Phospholipid Zwitterionic Surfactant CDP-W on the Characteristics of Liposome (인지질계 양쪽성 계면활성제 CDP-W 첨가가 리포좀 특성에 미치는 영향)

  • Jeong Min Lee;Jong Choo Lim
    • Applied Chemistry for Engineering
    • /
    • v.35 no.3
    • /
    • pp.230-238
    • /
    • 2024
  • In the present work, the interaction of lipid-based zwitterionic surfactant CDP-W with the vesicle membrane of phospholipids was investigated. For this purpose, interfacial properties such as critical micelle concentration (CMC) and surface tension were measured for the zwitterionic surfactant CDP-W and lecithin S100-3. The zeta potential of 1 wt% aqueous surfactant solutions was also measured as a function of pH to determine the iso-electric point of CDP-W surfactant, where the characteristic of CDP-W surfactant changes from a cationic surfactant to an anionic surfactant. Based on the iso-electric point measurement of CDP-W surfactant, the effects of pH change and CDP-W addition on the stability of S100-3 liposome systems were studied, such as average particle size, polydispersity index (PDI), and zeta potential. The effect of CDP-W on the fluidity characteristics of liposome membranes such as fluorescence anisotropy ratio, deformability, and melting point was investigated at pH 6 where the most stable liposomes were prepared to understand the effect of the fluidity of the liposome membrane on the encapsulation efficiency of active materials and the stability of liposome systems.