• Title/Summary/Keyword: membrane contactor

Search Result 46, Processing Time 0.023 seconds

REMOVAL OF DISSOLVED OXYGEN USING PVDF HOLLOW FIBER MEMBRANE CONTACTOR

  • Lee, Ki-Sub;Park, You-In;Yeon, Sun-Hwa;Sung, Kyung-Soo;Rhim, Ji-Won;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.133-135
    • /
    • 2003
  • The removal of dissolved oxygen(DO) from water was studied using a poly(vinyliene fluoride)(PVDF) hollow fiber membrane contactor(HFMC) with the vacuum degassing process(VDP), Asymmetric porous PVDF hollow fiber membranes (HFM) for membrane contactor were prepared by a wet phase inversion method. In spinning of these PVDF hollow fibers, dimethy lacetamide (DMAc), LiCl and pure water were used as a solvent, a pore-forming additive and internal/external coagulant, respectively. The characteristics of the structure(pore size, porosity etc.) of the prepared PVDF HFMs as a function of concentration of pore-forming additive in polymer dope solution were studied. Also, the removal efficiency of DO from water according to flow rates of water, using PVDF HFMC with VDP, was studied. The performance of the asymmetric porous PVDF HFMC and a symmetric porous PP HFMC commercialized were compared. As a result, the asymmetric porous PVDF HFMC showed higher removal efficiency of DO than that of a symmetric porous PP HFMC.

  • PDF

Evaluation of Propylenecarbonate/water Physical Absorbents and its Application in Membrane Contactors for CO2/CH4 Separation (CO2/CH4 분리를 위한 프로필렌카보네이트/물 흡수제 특성 평가 및 막접촉기의 적용)

  • Park, Ahrumi;Kim, Seong-Joong;Lee, Pyung Soo;Nam, Seung Eun;Park, You In
    • Membrane Journal
    • /
    • v.26 no.2
    • /
    • pp.126-134
    • /
    • 2016
  • To produce renewable biomethane from biogas, the properties of physical absorbents such as water, methanol, 1-methyl-2-pyrrolidone (NMP), poly(ethylene glycol) dimethylether (PEGDME), and propylene carbonate (PC) were studied, and PC was applied to membrane contactor systems. Among physical absorbents, PC exhibited a high contact angle of $58.3^{\circ}$ on polypropylene surface, and a PC/water mixture (5 wt%) increased the contact angle to $90^{\circ}$. Furthermore, the PC/water mixture presented higher $CO_2$ absorption capacities (0.148-0.157 mmol/g) than that of water (0.121 mmol/g), demonstrating a good property as an absorbent for membrane contactors. Actual operations in membrane contactors using the PC/water mixture resulted in $CO_2$ removal of 98.0-97.8% with biomethane purities of 98.5-98.3%, presenting a strong potential for biogas treatment. However, the PC/water mixture yielded moderate improved in $CO_2$ removal and methane recovery, as compared with water in the membrane contactor operation. This is originated from insufficient desorption processes to reuse absorbent and low $CO_2$ flux of the PC/water absorbent. Thus, it is requiring optimizations of membrane contactor technology including development of absorbent and improvement of operation process.

Effect of Membrane Material and Absorbent Type on $SO_2$ Removal Using Microporous Hollow-fiber Membrane G-L Contactors (다공성 중공사막 기액 접촉기틀 이용한 $SO_2$ 제거에서 막재질과 흡수제의 영향)

  • Song Hee-Ouel;Kim In-Won;Park Hyun-Hee;Lim Chun-Won;Jo Hang-Dae;Lee Hyung-Keun
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.2 s.31
    • /
    • pp.14-21
    • /
    • 2006
  • An experimental apparatus for the removal of $SO_2$ gas using microporous hollow-fiber membrane G-L contactors was setup. Various performance experiments were carried out with commercial membrane modules and the membrane modules made by KIER. The $SO_2$ removal efficiency was outstanding. When the hollow-fiber membrane was used for the removal of $SO_2$, the selection of absorbers and additives, membrane material, operating conditions of membrane manufacture were significant variables to develop optimal G-L contactors. More experiment works will be done for the development of compact, cost-effective and better G-L contactors.

  • PDF

Membrane Surface Modification through Direct Fluorination for Gas-Liquid Contactor (막접촉기 응용을 위한 직접 불소화를 통한 막의 표면개질)

  • Lee, Hyung-Keun;Park, Bo-Ryoung;Rhim, Ji-Won;Lee, Sang-Yun;Hwang, Taek-Sung
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.345-351
    • /
    • 2007
  • In this research, by using the fluorine gas, the poly(ether sulfone) (PES), the polysulfone (PSf), and the poly-vinylidenefluoride (PVDF) membranes were modified to improve the performance of the optional Gas-Liquid Contactor The SEM, surface contact angle, XPS, and the water transmission minimum pressure test was performed in order to examine the characteristics of which is surface modified. As a result of looking into the surface morphology of from the SEM measurement, we could know that the roughness of the membrane surface increased as the fluorine processing time increased. $-CH_2$, and the perfluoro group of $-CH_3$ were chemically combined with the surface fluorine conversion film surface and the hydrophobicity was exposed to be increased. Moreover, we could know that as the surface fluorinated processing time increased from the surface contact angle and water transmission minimum pressure test, the measured value increased and the overall characteristics were improved.

Propionibacterium acidipropionici를 이용한 유기산의 대량생산공정과 선별적 농축에 관한 연구

  • Kim, Dae-Sik;Choe, Cheol-Ho;Lee, Yeong-Mu;Lee, Ui-Sang
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.237-240
    • /
    • 2000
  • Organic acids which were produced from biomass wastes streams by cell-recycle fermentation using Propionibacterium acidipropionici ATCC 4965 were extracted by Membrane Contactor using TOA/MIBK system. Maximum productivity was 3.32g organic acid/L/hr at the dilution rate of 0.2/hr in the results of continuous fermentation. The diluted organic acids in the fermenter were selectively separated by Membrane Contactor extraction using 30%(w/w) trioctylamine(TOA) dissolved in methylisobutylketone(MIBK). The flow rate of aqueous phase is 200ml/min and that of extraction phase is 100ml/min. The degree of Acetic acid and Propionic acid extraction from fermentation broth was reached 56.25%, 72.41% respectively.

  • PDF

Modeling of Ammonia Mass Transfer Using a Hollow Fiber Membrane Contactor (중공사막 접촉기를 이용한 암모니아 물질전달 모델링)

  • Oh, Dae-Yang;Jeong, Joo-Young;Choi, Won-Ho;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.503-510
    • /
    • 2011
  • Ammonia in water which is toxic to human, its concentration is regulated below 0.5 mg/L in drinking water. Current study aimed to develop appropriate models for ammonia stripping using hollow fiber membrane contactor. Two different models were developed during the study. Model 1 was assumed only free ammonia ($NH_3$) transfer in stripping process, whereas the Model 2 was assumed with total ammonia ($NH_3+{NH_4}^+$) transfer. Ammonium chloride ($NH_4CI$), sodium hydroxide(NaOH) were used to make ammonia solution, which was concentration of 25 mg as N/L at a pH of 10.5. The experimental conditions were such that, the liquid flow was in tube-side in upward direction and t he gas flow was on shell-side in downward direction a t room temperature. The experimental and modeling results showed that marginal difference were observed at low gas flux. However the difference between the both models and experimental value were increased when the gas flux was increased. The study concludes that the Model 1 with free ammonia is more appropriate when both models were compared and useful in ammonia stripping process at low gas flux.

Prediction of Absorption Behavior of Carbon Dioxide on Membrane Contactor (분리막 접촉기를 통한 이산화탄소 흡수거동 예측)

  • Cho, In-Gi;Ahn, Hyo-Seong;Hahm, Moon-Ky;Kim, I.H.;Lee, Yong-Taek;Park, You-In;Lee, Kew-Ho
    • Membrane Journal
    • /
    • v.10 no.1
    • /
    • pp.39-46
    • /
    • 2000
  • To predict the absorption behavior of carbon dioxide on membrane contactor, an aqueous potassium carbonate solution as an absorbent. The reversible reactions of carbon dioxide with chemicals were considered, and the physicochemical properties of reaction rate constants, equilibrium constants, solubilities and diffusion coefficients were used as a function of concentration of carbon dioxide and the temperature. A non-wetted mode was also used as an operating condition of the membrane contactor. In these operation conditions, the effect of the following system parameters were studied : the concentration of potassium carbonate, the velocity of the absorbent and the pressure of the mixture gas. The absorption behavior of carbon dioxide caused by a facilitated transport was observed as the increment of the concentration of the absorbent. The absorption rate of carbon dioxide was increased as the absorbent velocity was increased. Furthermore, it was found that the pressure if the mixture gas and the reuse number of absorbent affect severely the absorption rate of carbon dioxide. The absorption behavior was successfully predicted by the computer simulation using the system parameters which are important for design and operation of the membrane contactor.

  • PDF

Dissolution of Oxygen in Water by Nonporous Hollow Fiber Membrane Contactor (비다공성 분리막을 이용한 수용액 내 용존 산소 조절)

  • Lee, Yong-Taek;Jeong, Heon-Kyu;Ahn, Hyo-Seong;Song, In-Ho;Jeon, Hyun-Soo;Jeong, Dong-Jae
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.352-358
    • /
    • 2007
  • A nonporous hollow fiber membrane contactor was used to control the concentration of oxygen dissolved in an aqueous solution, which was predicted along the hollow fiber membrane using a computer simulation. The governing ordinary differential equations were derived for the occurrent flows of the feed aqueous solution and the feed gas mixture in a membrane contactor and they were numerically solved using the 5th Runge-Kutta-Verner method with a personal computer, where the program was coded utilizing a software of the Compaq Visual Fortran 6.6. It is found that the concentration of oxygen dissolved in water increases from 30 to 64 ppm as the length of the hollow fiber increases from 0.4 to 1.2 m when the membrane of fibers are equal to be 16,000; the flow rate of the feed gas is kept to be 0.536 mol/sec; its pressure is maintained to be 486 kPa; the flow rate of the water is 16.69 mol/sec. As the flow rate of the water increases from 9.26 to 26.85 mol/sec, the concentration of oxygen decreases from 40 to 20 ppm with the constant fiber length of 0.4 m. Finally, it is observed that the concentration of oxygen increases from 33 to 69 ppm as the pressure of the feed gas increases from 298 to 847 kPa.