• Title/Summary/Keyword: membrane cleaning

Search Result 168, Processing Time 0.024 seconds

Scale formation on vacuum membrane distillation for SWRO brine treatment (진공 막증류 공정의 스케일 막오염 형성에 관한 연구)

  • Hwang, Tae-Mun;Jang, Eun-Kyung;Nam, Sook-Hyun;Koo, Jae-Wuk;Kim, Eun-Ju
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.4
    • /
    • pp.311-319
    • /
    • 2017
  • Scale formation is inevitable problem when seawater is treated by vacuum membrane distillation. The reason is the high concentration of calcium ion($Ca^{2+}$), sulfate ion(${SO_4}^{2-}$) and bicarbonate ion(${HCO_3}^-$). These ions form calcium sulfate($CaSO_4$) and calcium carbonate($CaCO_3$) on the membrane. The scale formed on membrane has to be removed, because the flux can be severely reduced and membrane wetting can be incurred. This study was carried out to investigate scale formation and effectiveness of acid cleaning in vacuum membrane distillation for SWRO brine treatment. It was found that permeate flux gradually declined until volume concentration factor(VCF) reached around 1.55 and membrane wetting started over VCF over 1.6 in the formation of precipitates containing $CaSO_4$ during VMD operation. In contrast, when calcium carbonate formed on membrane, permeate flux was gradually reduced until VCF 3.0. The precipitates containing both $CaSO_4$ and $CaCO_3$ were formed on the membrane surface and in the membrane pore.

Effect of Inorganic Particles on Organic Fouling in Pressurized Membrane Filtration (가압식 분리막 여과에서 무기입자의 존재가 유기파울링에 미치는 영향)

  • Jang, Hoseok;Kim, Jeonghwan
    • Membrane Journal
    • /
    • v.30 no.2
    • /
    • pp.131-137
    • /
    • 2020
  • In this study, effect of inorganic particles on organic fouling was investigated by a laboratory-scaled pressurized membrane filtration. In order to cause organic fouling, sodium alginate (SA) was used as a feed solution. Regardless of the presence of inorganic SiO2 particles, the complete pore blocking played an important role in determining the fouling rate during the initial period of membrane filtration. However, the formation of cake layer resulted in the membrane fouling more dominantly as filtration time progressed. In the presence of inorganic particles, both specific cake resistance and compressibility associated with the membrane fouling formed were relatively lower than that without SiO2 particles. Membrane fouling was more severe at constant flux mode of filtration than that observed at constant pressure mode probably due to the concomitant increase of compressibility of fouling layer with transmembrane pressure (TMP). It was found that the presence of SA and SiO2 particles in feed solution provided the synergistic effect on the hydraulic backwashing to reduce membrane fouling as compared to the SA solution alone without the inorganic particles.

Ceramic based Nanofiltration Membrane for Wastewater Treatment: A Review (폐수처리를 위한 세라믹계 나노여과막: 리뷰)

  • Yeonsoo, Kwak;Rajkumar, Patel
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.390-400
    • /
    • 2022
  • Nanofiltration (NF) membranes are more popular than reverse osmosis (RO) membranes as they can be operated at much lower pressures for applications in treatment of wastewater from industries like food processing and pharmaceutical as well as municipal sewage water. The separation mechanism in case of NF membranes is based on solution diffusion as well as sieving, for which the crosslinking density of the thin film of the composite membrane is less then RO membrane. Unlike ceramic membranes, membrane fouling is one of the chronic problems that occur during the nanofiltration process in polymeric membranes. Membrane cleaning is done to get rid of reversible as well as irreversible fouling by treatment with sodium hypochlorite. Compared to polymeric membranes, ceramic membranes show higher stability against these agents. In this review different types of ceramic membrane applied wastewater treatment by NF process are discussed.

Treatment of oily wastewater from cold-rolling mill through coagulation and integrated membrane processes

  • Cheng, Xue-Ni;Gong, Yan-Wen
    • Environmental Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.159-163
    • /
    • 2018
  • The feasibility of applying coagulation-integrated microfiltration (MF) as a pretreatment for an ultrafiltration (UF) feed in oily wastewater treatment was investigated. The effects of different coagulants on oil removal rates from wastewater were studied. The maximum oil removal rate of 82% was obtained after coagulation with 130 mg/L of polyaluminium chloride (PAC). UF flux reached $95L/(m^2{\cdot}h)$ with coagulation-integrated MF as pretreatment. This value was 2.5 times higher than that flux obtained without pretreatment. The value of UF flux increased as the transmembrane pressure (TMP) and cross-flow velocity (CFV) of the UF module increased. UF flux gradually increased when TMP and CFV exceeded 0.4 MPa and 3 m/s, respectively, because of concentration polarization and membrane fouling stabilization. Chemical oxygen demand reduction and oil removal rate reached 95.2% and 98.5%, respectively, during integrated membrane processing with a PAC concentration of 130 mg/L, TMP of 0.4 MPa, and CFV of 3 m/s for UF. In addition, sequentially cleaning the fouling membrane with NaOH and $HNO_3$ aqueous solutions caused UF flux to recover to 90%. These encouraging results suggested that the hybrid integrated membrane process-based coagulation and MF + UF are effective approaches for oily wastewater treatment.

Evaluation of Cleaning ability and Environmental Evaluation of Commercial Aqueous/Semi-aqueous Cleaning Agents (시판 수계/준수계 세정제의 세정성 및 환경성 평가 연구)

  • Cha, A.J.;Park, J.N.;Kim, H.S.;Bae, J.H.
    • Clean Technology
    • /
    • v.10 no.2
    • /
    • pp.73-87
    • /
    • 2004
  • In most of industrial fields, cleaning is employed for removing soils on their products or parts. Halogenated cleaning agents such as CFC-113, 1,1,1-TCE(1,1,1-trichloroethane), MC(methylene chloride) and TCE (trichloroethylene) have been used as cleaning ones in most of companies in the world since their excellent performance of cleaning ability and good material compatibility. However, CFC-113 and 1,1,1-TCE which are ozone destruction substances are not used any more in the advanced countries because of the which are ozone destruction substances are not used any more in the advanced countries because of the Montreal protocol. MC and TCE are now used restrictively at small part of industrial fields in most of countries since they are known to be hazardous or carcinogenic materials. Thus, it is indispensible that the alternative cleaning agents which are environmental-friendly and safe, and show good cleaning ability should be developed or utilized for replacement of the halogenated cleaning agents. Aqueous/semi-aqueous cleaning agents are evaluated to be promising alternative ones among various alternatives in environmental and economical view point. In this study, commercially available 12 aqueous and 6 semi-aqueous cleaning agents were selected and their physical properties, cleaning abilities, rinsing abilities and recycling of contaminated rinse water were measured and analyzed. Aqueous cleaning agents with higher wetting index showed better cleaning ability compared with those with lower wetting index. However wetting index did not have any correlation with cleaning ability in semi-aqueous cleaning agents. It was observed that soil concentration in aqueous and semi-aqueous cleaning agents should be maintained below the certain concentrations which depend on types of clearing agents. More than 70% soils in contaminated rinse water by some of aqueous and semi-aqueous clearing agents could be separated by simple settling method. This means that some cleaning agents with high oil-water separation efficiency will be effiective for recycling oil-contaminated rinse water. It was found that contaminated rinse water with aqueous agents was purified easiy by ultrafiltration method with PAN membrane of 30 kDa.

  • PDF

Understanding Alginate Fouling in Submerged Microfiltration Membrane System for Seawater Pretreatment (해수전처리를 위한 침지식 정밀여과 멤브레인 시스템에서 Alginate 파울링의 이해)

  • Jang, Hoseok;Kwon, Deaeun;Kim, Jeonghwan
    • Membrane Journal
    • /
    • v.26 no.1
    • /
    • pp.55-61
    • /
    • 2016
  • Organic fouling observed in submerged membrane filtration as a pretreatment for seawater desalination increases energy consumption for membrane operation because of requiring frequent chemical cleaning and membrane replacement. In membrane pretreatment for seawater facing with algae blooms, membrane fouling was observed in submerged microfiltration using sodium alginate model compound which is one of the main components of extracellular polymeric substances. Without aeration, aglinate fouling increased with its concentration while aeration reduced the alginate fouling effectively regardless of its concentration tested. In the absence of aeration, alingate fouling tended to be decreased with increasing calcium concentration. However, this effectiveness was reduced by increasing sodium chloride concentration. At high concentration of sodium chloride and calcium similar to the seawater conditions, aeration reduced initial fouling. However, as time progressed, the effect of increased airflow rate on fouling reduction was not significant, implying that optimum airflow rate to control alginate fouling in submerged microfiltration can exist.

Preparation of highly hydrophobic PVDF hollow fiber composite membrane with lotus leaf-like surface and its desalination properties

  • Li, Hongbin;Zi, Xingchen;Shi, Wenying;Qin, Longwei;Zhang, Haixia;Qin, Xiaohong
    • Membrane and Water Treatment
    • /
    • v.10 no.4
    • /
    • pp.287-298
    • /
    • 2019
  • Lotus leaf has a special dual micro and nano surface structure which gives its highly hydrophobic surface characteristics and so-called self cleaning effect. In order to endow PVDF hollow fiber membrane with this special structure and improve the hydrophobicity of membrane surface, PVDF hollow fiber composite membranes was obtained through the immersion coating of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) dilute solution on the outside surface of PVDF support membrane. The prepared PVDF composite membranes were used in the vacuum membrane distillation (VMD) for the desalination. The effects of PVDF-HFP dilute solution concentration in the dope solution and coating time on VMD separation performance was studied. Membranes were characterized by SEM, WCA measurement, porosity, and liquid entry pressure of water. VMD test was carried out using $35g{\cdot}L^{-1}$ NaCl aqueous solution as the feed solution at feed temperature of $30^{\circ}C$ and the permeate pressure of 31.3 kPa. The vapour flux reached a maximum when PVDF-HFP concentration in the dilute solution was 5 wt% and the coating time was kept in the range of 10-60 s. This was attributed to the well configuration of micro-nano rods which was similar with the dual micro-nano structure on the lotus leaf. Compared with the original PVDF membrane, the salt rejection can be well maintained which was greater than 99.99 % meanwhile permeation water conductivity was kept at a low value of $7-9{\mu}S{\cdot}cm^{-1}$ during the continuous testing for 360 h.

Optimization of an Advanced Oxidation with Ozone and Ceramic Membrane Integrated Process for Greywater Reuse (중수 재이용을 위한 오존 고도산화 및 세라믹 분리막 일체형 공정의 최적화 연구)

  • Lee, Jonghun;Rho, Hojung;Park, Kwang Duck;Woo, Yun Chul
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.433-441
    • /
    • 2021
  • The aim of this study was to optimize the ozonation and ceramic membrane integrated process for greywater reclamation. The integrated process is a repeated sequential process of filtration and backwash with the same ceramic membrane. Also, this study used ozone and oxygen gas for the backwashing process to compare backwashing efficiency. The study results revealed that the optimum filtration and backwash time for the process was 10 minutes each when comparing the filtrate flow and membrane recovery rate. The integrated process was operated at three different operating conditions with i) 10 minutes for filtration and 10 minutes for ozonation, ii) 10 minutes for filtration and 10 minute for oxygen aeration, and iii) continuous filtration without any aeration for synthetic greywater. The integrated process with ozone backwashing could produce 0.55 L/min of filtrate with an average of 18.42% permeability recovery, while the oxygen backwashing produced 0.47 L/min and 6.26%, respectively. And without any backwashing, the integrated process could produce 0.29 L/min. This shows that the ozone backwash process is capable of periodically recovering from membrane fouling. The resistance of the fouled membrane was approximately 34.4% for the process with ozone backwashing, whereas the resistance was restored by 10.8% for the process with oxygen backwashing. Despite the periodical ozone backwashing and chemical cleaning, irreversible fouling gradually increased approximately 3 to 4%. Approximately 97.6% and 15% turbidity and TOC were removed by ceramic membrane filtration, respectively. Therefore, the integrated process with ozonation and ceramic membrane filtration is a potential greywater treatment process.

Complete Coverage Path Planning of Cleaning Robot

  • Liu, Jiang;Kim, Kab-Il;Son, Young-I.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.429-432
    • /
    • 2003
  • In this paper, a novel neural network approach is proposed for cleaning robot to complete coverage path planning with obstacle avoidance in stationary and dynamic environments. The dynamics of each neuron in the topologically organized neural network is characterized by a shunting equation derived from Hodgkin and Huxley's membrane equation. There are only local lateral connections among neurons. The robot path is autonomously generated from the dynamic activity landscape of the neural network and the previous robot location without any prior knowledge of the dynamic environment.

  • PDF

Guided tissue regeneration using resorbable membrane with or without xenograft in osseous defect (골결손부에서 흡수성 차폐막 단독 또는 이종골을 동반하여 시행한 조직유도재생술)

  • Lee, Won-Jin;Kim, Won-Gi;Ahn, Yong-Bum;Chang, Moon-Taek;Kim, Hyung-Seop
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.4
    • /
    • pp.737-744
    • /
    • 2008
  • Purpose: In advanced case of periodontitis, surgical treatment without bone contouring may result in residual pockets inaccessible to proper cleaning during post-treatment maintenance. This problem can be avoided or reduced by applying guided tissue regeneration. Materials and Methods: All of 3 patients had deep periodontal pocket depth and bleeding on probing, and radiograph revealed osseous defect, so we planned guided tissue regeneration using resorbable membrane with or without xenograft. Result: 6 months later, periodontal pocket depth and bleeding on probing was improved and gingiva was stable. Conclusion: Guided tissue regeneration using resorbable membrane with or without xenograft in osseous defect is predictable.