• 제목/요약/키워드: membrane binding

검색결과 526건 처리시간 0.023초

Binding Characteristics to Mosquito-larval Midgut Proteins of the Cloned Domain II-III Fragment from the Bacillus thuringiensis Cry4Ba Toxin

  • Moonsom, Seangdeun;Chaisri, Urai;Kasinrerk, Watchara;Angsuthanasombat, Chanan
    • BMB Reports
    • /
    • 제40권5호
    • /
    • pp.783-790
    • /
    • 2007
  • Receptor binding plays an important role in determining host specificity of the Bacillus thuringiensis Cry $\delta$-endotoxins. Mutations in domains II and III have suggested the participation of certain residues in receptor recognition and insect specificity. In the present study, we expressed the cloned domain II-III fragment of Cry4Ba and examined its binding characteristics to mosquito-larval midgut proteins. The 43-kDa Cry4Ba-domain II-III protein over-expressed in Escherichia coli as inclusion bodies was only soluble when carbonate buffer, pH 10.0 was supplemented with 4M urea. After renaturation via stepwise dialysis and subsequent purification, the refolded domain II-III protein, which specifically reacts with anti Cry4Ba-domain III monoclonal antibody, predominantly exists as a $\beta$-sheet structure determined by circular dichroism spectroscopy. In vitro binding analysis to both histological midgut tissue sections and brush border membrane proteins prepared from susceptible Aedes aegypti mosquito-larvae revealed that the isolated Cry4Ba-domain II-III protein showed binding functionality comparable to the 65-kDa full-length active toxin. Altogether, the data present the 43-kDa Cry4Ba fragment comprising domains II and III that was produced in isolation was able to retain its receptor-binding characteristics to the target larval midgut proteins.

NMR Studies on the Structure of Human Annexin I

  • Lee, Yeon-Hee;Han, Hee-yong;Oh, Jee-Young;Na, Doe-Sun;Lee, Bong-Jin
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1997년도 춘계학술대회
    • /
    • pp.86-86
    • /
    • 1997
  • Human annexin I is a member of annexin family of calcium dependent phospholipid binding proteins, which have been implicated in various physiological roles including phospholipase A$_2$ (PLA$_2$) inhibition, membrane fusion and calcium channel activity. In this work, the structure of N-terminally truncated human annexin I (Δ-annexin I) and its interactions with Ca$\^$2+/, ATP and cAMP were studied at atomic level by using $^1$H, $\^$15/N, $\^$l3/C NMR (nuclear magnetic resonance) spectroscopy. The effect of Ca$\^$2+/ binding on the structure of Δ-annexin I was investigated, and compared with that of Mg$\^$2+/ binding. The addition of Ca$\^$2+/ to Δ-annexin I caused some changes in the high field and low field regions of $^1$H NMR spectra. Whereas, upon addition of Mg$\^$2+/ to Δ-annexin I, almost no change could be observed. Also we found that the binding ratio of ATP to Δ-annexin I is 1. Because Δ-annexin I is a large protein with 35 kDa molecular weight, site-specific (carbonyl-$\^$l3/C, amide-$\^$15/N) labeling technique was used to determine the interaction sites of Δ-annexin I with Ca$\^$2+/ and ATP. Assignments of all the histidinyl carbonyl carbon resonances have been completed by using Δ-annexin I along with its specific 1,2-subdomain. The carbonyl carbon resonances originating from His52 and His246 of Δ-annexin I were significantly affected by Ca$\^$2+/ binding, and some Tyr and Phe resonances were also affected. The carbonyl carbon resonances originating from His52 is significantly affected by ATP binding, therefore His52 seems to be involved in the ATP binding site of Δ-annexin I.

  • PDF

Functional characterization of the distal long arm of laminin: Characterization of Cell- and heparin binding activities

  • Sung, Uhna;O′Rear, Julian J.;Yurchenco, Peter D.
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1995년도 제3회 추계심포지움
    • /
    • pp.107-113
    • /
    • 1995
  • Basement membrane laminin is a multidomain glycoprotein that interacts with itself, heparin and cells. The distal long arm plays major cell and heparin interactive roles. The long arm consists of three subunits (A, B1, B2) joined in a coiled-coil rod attached to a terminal A chain globule (G). The globule is in turn subdivided into five subdomains (Gl-5). In order to analyze the functions of this region, recombinant G domains (rG, rAiG, rG5, rGΔ2980-3028) were expressed in Sf9 insect cells using a baculovirus expression vector. A hybrid molecule (B-rAiG), consisting of recombinant A chain(rAiG) and the authentic B chains (E8-B)was assembled in vitro. The intercalation of rAiG into E8-B chains suppressed a heparin binding activity identified in subdomain Gl-2. By the peptide napping and ligand blotting, the relative affinity of each subeomain to heparin was assigned as Gl> G2= G4> G5> G3, such that G1 bound strongly and G3 not at all. The active heparin binding site of G domain in intact laminin appears to be located in G4 and proximal G5. Cell binding was examined using fibrosarcoma Cells. Cells adhered to E8, B-rAiG, rAiG and rG, did not bind on denatured substrates, poorly bound to the mixture of E8-B and rG. Anti-${\alpha}$6 and anti-${\beta}$1 integrin subunit separately blocked cell adhesion on E8 and B-rAiG, but not on rAiG. Heparin inhibited cell adhesion on rAiG, partially on B-rAiG, and not on E8. In conclusion, 1) There are active and cryptic cell and heparin binding activities in G domain. 2) Triple-helix assembly inactivates cell and heparin binding activities and restores u6131 dependent cell binding activities.

  • PDF

EPR Spectra of Spin-Labeled Cytochrome c Bound to Acidic Membranes: Implications for the Binding Site and Reversibility

  • Min, Tong-Pil;Park, Nan-Hyang;Park, Hee-Young;Hong, Sun-Joo;Han, Sang-Hwa
    • BMB Reports
    • /
    • 제29권2호
    • /
    • pp.169-174
    • /
    • 1996
  • Yeast cytochrome c (cyt c) was modified at cysteine-102 with a thiol-specific spin label and its interaction with liposomes containing acidic phospholipids was studied by electron paramagnetic resonance (EPR) spectroscopy. Association of cyt c with liposomes resulted in a significant reduction in the mobility of the spin label and a fraction of cyt c even seemed to be immobilized. Based on a large spectral change upon binding and the proximity of the spin-label to lysine-86 and -87, we propose these two residues to be the potential binding site at neutral pH. The interaction is electrostatic in nature because the spectral changes were reversed by addition of anions. Dissociation of the bound cyt c by anions, however, became less effective as the lipid/protein ratio increased. This suggests a repulsive lateral interaction among the bound cyt c. Unlabeled cyt c molecules added to preformed cyt c-liposome complex displaced the bound (spin labeled) cyt c and the process was competitive and reversible.

  • PDF

Improving Protein Production on the Level of Regulation of both Expression and Secretion Pathways in Bacillus subtilis

  • Song, Yafeng;Nikoloff, Jonas M.;Zhan, Dawei
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권7호
    • /
    • pp.963-977
    • /
    • 2015
  • The well-characterized gram-positive bacterium Bacillus subtilis is an outstanding industrial candidate for protein expression owing to its single membrane and high capacity of secretion, simplifying the downstream processing of secretory proteins. During the last few years, there has been continuous progress in the illustration of secretion mechanisms and application of this robust host in various fields of life science, such as enzyme production, feed additives, and food and pharmaceutical industries. Here, we review the developments of Bacillus subtilis as a highly promising expression system illuminating strong chemical- and temperatureinducible and other types of promoters, strategies for ribosome-binding-site utilization, and the novel approach of signal peptide selection. Furthermore, we outline the main steps of the Sec pathway and the relevant elements as well as their interactions. In addition, we introduce the latest discoveries of Tat-related complex structures and functions and the countless applications of this full-folded protein secretion pathway. This review also lists some of the current understandings of ATP-binding cassette transporters. According to the extensive knowledge on the genetic modification strategies and molecular biology of Bacillus subtilis, we propose some suggestions and strategies for improving the yield of intended productions. We expect this to promote striking future developments in the optimization and application of this bacterium.

Cloning and characterization of a gene encoding ABP57, a soluble auxin-binding protein

  • Lee, Keunpyo;Kim, Myung-Il;Kwon, Yu-Jihn;Kim, Minkyun;Kim, Yong-Sam;Kim, Donghern
    • Plant Biotechnology Reports
    • /
    • 제3권4호
    • /
    • pp.293-299
    • /
    • 2009
  • Auxin-binding protein 57 ($ABP_{57}$), a soluble auxin-binding protein, acts as a receptor to activate plasma membrane (PM) $H^+-ATPase$. Here, we report the cloning of abp57 and the biochemical characterization of its protein expressed in E. coli. The analysis of internal amino acid sequences of $ABP_{57}$ purified from rice shoots enabled us to search for the corresponding gene in protein DB of NCBI. Further BLAST analysis showed that rice has four abp57-like genes and maize has at least one homolog. Interestingly, Arabidopsis seems to have no homolog. Recombinant $ABP_{57}$ expressed in E. coli caused the activation of PM $H^+-ATPase$ regardless of the existence of IAA. Scatchard analysis showed that the recombinant protein has relatively low affinity to IAA as compared to natural $ABP_{57}$. These results collectively support the notion that the cloned gene is responsible for $ABP_{57}$.

C형 간염바이러스 E2 단백질에 결합하는 추정 세포수용체 cDNA의 클로닝 (Cloning of cDNA Encoding Putative Cellular Receptor Interacting with E2 protein of Hepatitis C Virus)

  • 이성락;백재은;석대현;박세광;최인학
    • 생명과학회지
    • /
    • 제13권4호
    • /
    • pp.541-550
    • /
    • 2003
  • 본 실험에서는 C형 간염바이러스 (HCV)의 외피 단백질인 E2 당단백질에 결합하는 세포단백질들을 클로닝하기 위해 간세포 cDNA를 phage 표면에 발현시킨 phage library를 제작하였고, 12-mer peptide library와 함께 E2 단백질에 대해 panning을 실시하였다. 검색결과 세포내 신호전달과 cytoskeleton 구성에 관여하는 tensin, membrane protein band 4.1 등 세포질내 단백질과 CCR7, CKR-L2, insulin-like growth factor-1 receptor 등 세포막 단백질 등이 확인되었다. 이들 단백질들을 발현하는 phage들은 수용성 E2단백질을 이용한 결합중화반응 결과 E2 단백질에 특이적으로 결합함이 확인되었다. 사람 T 세포에서 주로 발현되는 CCR7 유전자를 PHA로 활성화된 사람 T 세포의 total RNA를 이용하여 증폭하고 클로닝하였다. 293T 세포에 transfection시켜 단백질 발현양상을 flow cytometer로 분석하여 70% 이상의 세포들이 CCR7을 발현하고 있음을 관찰하였다. 수용성 E2 단백질을 CCR7이 transfection된 세포와 mock transfection된 대조군 세포에 각각 반응시킨 결과 dose-dependent 양상으로 CCR7에 결합하였다.

Reduction-Sensitive and Cysteine Residue-Mediated Streptococcus pneumoniae HrcA Oligomerization In Vitro

  • Kwon, Hyog-Young;Kim, Eun-Hye;Tran, Thao Dang Hien;Pyo, Suhk-Neung;Rhee, Dong-Kwon
    • Molecules and Cells
    • /
    • 제27권2호
    • /
    • pp.149-157
    • /
    • 2009
  • In both gram-positive and several gram-negative bacteria, the transcription of dnaK and groE operons is negatively regulated by HrcA; however, the mechanism modulating HrcA protein activity upon thermal stress remains elusive. Here, we demonstrate that HrcA is modulated via reduction and oligomerization in vitro. Native-PAGE analysis was used to reveal the oligomeric structure of HrcA. The oligomeric HrcA structure became monomeric following treatment with the reducing agent dithothreitol, and this process was reversed by treatment with hydrogen peroxide. Moreover, the mutant HrcA C118S exhibited reduced binding to CIRCE elements and became less oligomerized, suggesting that cysteine residue 118 is important for CIRCE element binding as well as oligomerization. Conversely, HrcA mutant C280S exhibited increased oligomerization. An HrcA double mutant (C118S, C280S) was monomeric and exhibited a level of oligomerization and CIRCE binding similar to wild type HrcA, suggesting that cysteine residues 118 and 280 may function as checks to one another during oligomer formation. Biochemical fractionation of E. coli cells overexpressing HrcA revealed the presence of HrcA in the membrane fraction. Together, these results suggest that the two HrcA cysteine residues at positions 118 and 280 function as reduction sensors in the membrane and mediate oligomerization upon stress.

Multilevel Precision-Based Rational Design of Chemical Inhibitors Targeting the Hydrophobic Cleft of Toxoplasma gondii Apical Membrane Antigen 1 (AMA1)

  • Vetrivel, Umashankar;Muralikumar, Shalini;Mahalakshmi, B;K, Lily Therese;HN, Madhavan;Alameen, Mohamed;Thirumudi, Indhuja
    • Genomics & Informatics
    • /
    • 제14권2호
    • /
    • pp.53-61
    • /
    • 2016
  • Toxoplasma gondii is an intracellular Apicomplexan parasite and a causative agent of toxoplasmosis in human. It causes encephalitis, uveitis, chorioretinitis, and congenital infection. T. gondii invades the host cell by forming a moving junction (MJ) complex. This complex formation is initiated by intermolecular interactions between the two secretory parasitic proteins-namely, apical membrane antigen 1 (AMA1) and rhoptry neck protein 2 (RON2) and is critically essential for the host invasion process. By this study, we propose two potential leads, NSC95522 and NSC179676 that can efficiently target the AMA1 hydrophobic cleft, which is a hotspot for targeting MJ complex formation. The proposed leads are the result of an exhaustive conformational search-based virtual screen with multilevel precision scoring of the docking affinities. These two compounds surpassed all the precision levels of docking and also the stringent post docking and cumulative molecular dynamics evaluations. Moreover, the backbone flexibility of hotspot residues in the hydrophobic cleft, which has been previously reported to be essential for accommodative binding of RON2 to AMA1, was also highly perturbed by these compounds. Furthermore, binding free energy calculations of these two compounds also revealed a significant affinity to AMA1. Machine learning approaches also predicted these two compounds to possess more relevant activities. Hence, these two leads, NSC95522 and NSC179676, may prove to be potential inhibitors targeting AMA1-RON2 complex formation towards combating toxoplasmosis.

MBR 공정에서 수온에 따른 막오염 및 CEB 세정효율 특성 (Characterization of membrane fouling and CEB (Chemical enhanced backwashing) efficiency with temperature in SMBR Process)

  • 박기태;박정훈;최은혜;김형수;김지훈
    • 상하수도학회지
    • /
    • 제31권5호
    • /
    • pp.389-395
    • /
    • 2017
  • In this paper, we investigate the characteristics of membrane fouling caused by water temperature in the Membrane bioreactor(MBR) process and try to derive the membrane fouling control by chemical enhanced backwashing(CEB). The extracellular polymeric substances(EPS) concentration was analyzed according to the water temperature in the MBR, and the membrane fouling characteristics were investigated according to the conditions, with sludge & without sludge, through a lab-scale reactor. As shown in the existing literature the fouling resistance rate was increased within sludge with the water temperature was lowered. However, in the lab-scale test using the synthetic wastewater, the fouling resistance increased with the water temperature. This is because that the protein of the EPS was more easily adsorbed on the membrane surface due to the increase of entropy due to the structural rearrangement of the protein inside the protein as the water temperature increases. In order to control membrane fouling, we tried to derive the cleaning characteristics of CEB by using sodium hypochlorite(NaOCl). We selected the condition with the chemicals and the retention time, and the higher the water temperature and the chemical concentration are the higher the efficiencies. It is considered that the increasing temperature accelerated the chemical reaction such as protein peptide binding and hydrolysis, so that the attached proteinaceous structure was dissolved and the frequency of the reaction collision with the protein with the chemical agent becomes higher. These results suggest that the MBRs operation focus on the fouling control of cake layer on membrane surface in low temperatures. On the other hand, the higher the water temperature is the more the operation strategies of fouling control by soluble EPS adsorption are needed.