• Title/Summary/Keyword: membrane actuator

Search Result 45, Processing Time 0.018 seconds

An Ultra Wideband, Novel and Reliable RF MEMS Switch

  • Jha, Mayuri;Gogna, Rahul;Gaba, Gurjot Singh;Miglani, Rajan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.4
    • /
    • pp.183-188
    • /
    • 2016
  • This paper presents the design and characterization of wide band ohmic microswitch with an actuation voltage as low as 20~25 V, and a restoring force of 14.1 μN. The design of the proposed switch is primarily composed of an electrostatic actuator, bridge membrane, cantilever (beam) and coplanar waveguide, suspended over the substrate. The analysis shows an insertion loss of −0.002 dB at 1GHz and remains as low as −0.35 dB, even at 100 GHz. The isolation loss of the switch is sustained at −21.09 dB at 100GHz, with a peak value of −99.58 dB at 1 GHz and up-state capacitance of 4 fF. To our knowledge, this is the first demonstration of a series contact switch, which works over a wide bandwidth (DC-100 GHz) and with such a high and sustained isolation, even at high frequencies and with an excellent figure of merit (fc=1/2.pi.Ron.Cu= 39.7 THz).

Development of Osmotic Infusion Pump (삼투압 약물주입 펌프의 개발)

  • Kim, Dong Sun;Choi, Seong Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.6
    • /
    • pp.471-475
    • /
    • 2015
  • Because of increasing demand, a small portable drug injector that uses osmotic pressure for its operation force is developed, and its performance is evaluated. The osmotic drug injector can be small and lightweight because it does not require heavy batteries and an actuator, unlike previous electromechanical drug injectors. Moreover, its injection pressure can be sustained longer than that of previous elastic drug injectors. The new device is composed of a drug sac, osmotic pressure chamber, semipermeable membrane, and solvent chamber. To evaluate its performance, an in-vitro experiment was designed to measure the outflow and the injection pressure with respect to time. The experimental results show that the new drug infuser can continuously deliver 20 ml drug over a period of 20 h. The maximum injecting pressure was over 400 mmHg. Which prevents backflow caused by changes in the outlet pressure resulting from changes to the position of the device and the patient's posture.

A Disparate Low Loss DC to 90 GHz Wideband Series Switch

  • Gogna, Rahul;Jha, Mayuri;Gaba, Gurjot Singh;Singh, Paramdeep
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.92-97
    • /
    • 2016
  • This paper presents design and simulation of wide band RF microswitch that uses electrostatic actuation for its operation. RF MEMS devices exhibit superior high frequency performance in comparison to conventional devices. Similar techniques that are used in Very Large Scale Integration (VLSI) can be employed to design and fabricate MEMS devices and traditional batch-processing methods can be used for its manufacturing. The proposed switch presents a novel design approach to handle reliability concerns in MEMS switches like dielectric charging effect, micro welding and stiction. The shape has been optimized at actuation voltage of 14-16 V. The switch has an improved restoring force of 20.8 μN. The design of the proposed switch is very elemental and primarily composed of electrostatic actuator, a bridge membrane and coplanar waveguide which are suspended over the substrate. The simple design of the switch makes it easy for fabrication. Typical insertion and isolation of the switch at 1 GHz is -0.03 dB and -71 dB and at 85 GHz it is -0.24 dB and -29.8 dB respectively. The isolation remains more than - 20 db even after 120 GHz. To our knowledge this is the first demonstration of a metal contact switch that shows such a high and sustained isolation and performance at W-band frequencies with an excellent figure-of merit (fc=1/2.pi.Ron.Cu =1,900 GHz). This figure of merit is significantly greater than electronic switching devices. The switch would find extensive application in wideband operations and areas where reliability is a major concern.

Development of a Tensile Cell Stimulator to Study the Effects of Uniaxial Tensile Stress on Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells (세포 인장 자극기의 개발과 세포 인장 자극을 통한 성체 줄기세포의 골분화 유도)

  • Shin, Hyun-Jun;Lee, Woo-Teak;Park, Suk-Hoon;Lee, Sun-Hwa;Park, Jung-Ho;Yoon, Yong-San;Shin, Jennifer H.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.7
    • /
    • pp.629-636
    • /
    • 2009
  • Mechanical stimulation is known to play a vital role on the differentiation of mesenchymal stem cells (MSCs) to pre-osteoblasts. In this research, we developed a tensile cell stimulator, composed of a DC motor-driven actuator and LVDT sensor for measuring linear displacement, to study the effects of tensile stress on osteogenic differentiation of MSCs. First, we demonstrated the reliability of this device by showing the uniform strain field in the silicon substrate. Secondly, we investigated the effects of tensile stretching on osteogenic differentiation. We imposed a pre-set cyclic strain at a fixed frequency on cell monolayer cultured on a flexible silicon substrate while varying its amplitude and duration. 60 min of resting period was allowed between 30 min of cyclic stretching and this cycle is repeated up to 7 days. Under the combined stimulation with osteogenic media and mechanical stretching, the osteogenic markers such as alkaline phosphatase (ALP), osterix, and osteopontin began to get expressed as early as 4 days of stimulation, which is much shorter than what is typically required for osteogenic media induced differentiation. Moreover, different markers were induced at different magnitudes of the applied strains. Lastly, for the case of ALP, we observed the antagonistic effects of osteogenic media when combined with mechanical stretching.

Preparation and Actuation Performance of Ionic Polymer-Metal Composite Actuators Based on Nafion-Alumina Composite Membranes (나피온-알루미나 복합막을 사용한 이온성 폴리머-금속 복합체 작동기의 제작 및 성능 평가)

  • Lee, Jang-Woo;Kim, Woo-Sung;Yoo, Young-Tai
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.377-383
    • /
    • 2009
  • Ionic polymer-metal composite (IPMC) actuator generates bending actuation via ion/water flux to the cathode side under an electric field. Polyelectrolytes in IPMC should possess high water-retention capability, proton conductivity, and Young's modulus. In this study. for endowing IPMCs with these properties, Nafion-alumina composite membranes containing $\alpha$- or $\gamma$-aluminas of $4{\sim}8$ wt% were prepared. Mechanical moduli of Nafion-alumina composite membranes were $7{\sim}3$ MPa higher than that of Nafion, with the slight decrease in proton conductivity. At DC 3 V. the actuation performance of the Nafion-$\alpha$-alumina (8 wt%)-IPMC was superior to that of the typical Nafion-IPMC. exhibiting 2.7 times the displacement with an enhanced blocking force. The enhanced actuation performance with the Nafion-$\alpha$-alumina composite membranes was attributed to the higher proton conductivity, the elevated ion/water flux, and the lower interfacial electric resistance of platinum electrodes and membrane, compared with those containing $\gamma$-alumina.