• 제목/요약/키워드: member section types

검색결과 48건 처리시간 0.024초

The effects of construction related costs on the optimization of steel frames

  • Choi, Byoung-Han;Gupta, Abhinav;Baugh, John W. Jr.
    • Structural Engineering and Mechanics
    • /
    • 제43권1호
    • /
    • pp.31-51
    • /
    • 2012
  • This paper presents a computational study that explores the design of rigid steel frames by considering construction related costs. More specifically, two different aspects are investigated in this study focusing on the effects of (a) reducing the number of labor intensive rigid connections within a frame of given geometric layout, and (b) reducing the number of different member section types used in the frame. A genetic algorithm based optimization framework searches design space for these objectives. Unlike some studies that express connection cost as a factor of the entire frame weight, here connections and their associated cost factors are explicitly represented at the member level to evaluate the cost of connections associated with each beam. In addition, because variety in member section types can drive up construction related costs, its effects are evaluated implicitly by generating curves that show the trade off between cost and different numbers of section types used within the frame. Our results show that designs in which all connections are considered to be rigid can be excessively conservative: rigid connections can often be eliminated without any appreciable increase in frame weight, resulting in a reduction in overall cost. Eliminating additional rigid connections leads to further reductions in cost, even as frame weight increases, up to a certain point. These complex relationships between overall cost, rigid connections, and member section types are presented for a representative five-story steel frame.

내재해성이 우수한 비닐하우스 부재의 단면형상 및 구조시스템에 관한 연구 (A Study on the Shape of Section in Member and Stress Tolerant Structural System in the Frame of Green Houses)

  • 심종석;한덕전
    • 한국디지털건축인테리어학회논문집
    • /
    • 제12권4호
    • /
    • pp.67-75
    • /
    • 2012
  • The damage of greenhouse has been increasing due to frequent collapse of frame in greenhouse caused by the heavy snow and strong wind. But, greenhouses are constructed by steel tube members of pipe style and pin connection of them, so these greenhouses are very weak. Therefore, this study was carried out to find the type of member section and structural frame system in stress tolerant greenhouses. The modeling types for analysis were designed in accordance with structural frame configuration and member section in greenhouse. These types of models, which are existing type, diagrid type, symmetric and asymmetric section type of frame member in greenhouse were classified. Displacement analysis varying the vertical and horizontal loads for a series of models was carried out. As a result of this paper, it was verified that the structural frame configuration of diagrid type and asymmetric type of member section is better than existing type in the frame of greenhouses against snow loads and wind loads.

차체구조용 박육부재의 단면형상변화에 따른 에너지흡수 특성 (Energy Absorbing Characteristics of Thin-Walled Members for Vehicles Having Various Section Shapes)

  • 차천석;정진오;이길성;백경윤;양인영
    • 한국정밀공학회지
    • /
    • 제20권10호
    • /
    • pp.177-182
    • /
    • 2003
  • The front-end side members of automobiles absorb most of the energy in a case of front-end collision. The front-end side members are required to have a high stiffness together with easiness to collapse sequentially to absorb more impact energy. The axial static collapse test (5mm/min) was conducted by using UTM for form different types of members which have different cross section shapes; single hat, single cap, double cap, and double hat. The single hat shaped section member has the typical standard section, which the double hat shape section has a symmetry in the center to have more stiffness. As a result of the test, the energy absorbing characteristic was analyzed for different section shapes. It turned out that the change of section shape influence the absorbing energy, the mean collapse load and the maximum collapse load, and the relation between the change of section shape and the collapse mode.

강재단면형상을 고려한 소요 내화피복 두께 산정에 관한 연구 (A Study on the Determination of Required Fire Protection Thickness Considering Steel Section Shape)

  • 김해수;강종
    • 한국산학기술학회논문지
    • /
    • 제12권12호
    • /
    • pp.5910-5916
    • /
    • 2011
  • 강재는 단면의 종류와 크기 및 부재에 따라 화재에 노출되는 표면적이 달라지며, 이에 따라 화재에 의한 강재의 온도상승도 큰 차이를 나타낸다. 단면형상계수($H_p$/A)는 강재의 종류, 크기, 적용부재 및 내화피복재의 종류 등의 변수에 따라 결정되며, 이것은 내화피복 두께를 결정하는 기준이 된다. 본 연구를 통하여 강재는 종류에 관계없이 단면의 크기가 증가할수록 단면형상계수는 감소하는 것을 알 수 있었다. 단면형상계수에 따른 강재의 종류별 내화피복 두께 산정 결과 1시간 내화성능은 기준보다 소요 두께가 30~50% 낮게 나타났다. 또한, 2시간 내화성능은 기준보다 소요 두께가 최저 27% 낮게 산정되는 부재도 있으나 대체로 기준에 근접하는 것을 알 수 있었다. 그러나 H형강의 경우 3시간 내화성능은 대체로 기준을 만족하지만 각형강관과 원형강관의 경우 5.0~17.5% 정도 기준을 상회하는 값으로 나타났다.

아치형 비닐하우스 구조의 해석정밀도에 따른 좌굴특성 연구 (A Study on Buckling Characteristics of Arch-type Vinyl House Structures according to Analytical Precision)

  • 윤석호
    • 한국공간구조학회논문집
    • /
    • 제15권4호
    • /
    • pp.57-64
    • /
    • 2015
  • The construction of vinyl greenhouses are increasing because of economic feasibility, construction period, and construction regulations. However, the vinyl greenhouses are apt to collapse by snow load since they have a small member as a temporary structure. The 3 types of buckling such as global, member and nodal buckling could be occurred to arched structures according to characteristics of cross section. To examine the member buckling, the precision of analysis need to be enhanced. In that case, we can examine the characteristics of the those buckling. The purposes of this study are to verify buckling characteristics of structures using the method of high precision analysis with a center node of member. The results of high precision analysis bring member buckling, and in the analysis method having the center node of member, the value of strength is getting lower than a previous study.

목조건축문화재에 있어서 변위 및 손상 유형에 관한 연구 (A Study on the Types of the Displacement and Damage of Wooden Architectural Cultural Assets)

  • 신병욱
    • 한국농촌건축학회논문집
    • /
    • 제21권3호
    • /
    • pp.25-32
    • /
    • 2019
  • This study is to derive the types of displacement and damage that occur in wooden architecture cultural assets. Although the wooden architectural cultural assets are being repaired through continuous maintenance, secondary problems frequently occur. This is because the root cause of the problem has yet to be solved. The types of displacement and damage that occur in the wooden architecture cultural asset are classified into three parts: the foundation section, the gagu section, and the roof section. In turn, the three main factors that lead to displacement and damages are the structures' load impact, the durability deterioration, and the imbalance. Load impact is a phenomenon in which the member is subjected to a load that causes deformation or cracks. Durability decline is a natural phenomenon that reduces the performance of lumber as a result of check shake, termite damage, and decay. The imbalance is a condition in which the lumber is twisted and the force balance is lost, due to either drying shrinkage or displacement of the gagu section.

단층래티스 돔의 좌굴부재 보강효과에 관한 연구 (Reinforcement Effects of Buckling Member for Single-layer Latticed Dome)

  • 정환목;윤석호;이동우
    • 한국공간구조학회논문집
    • /
    • 제16권4호
    • /
    • pp.45-52
    • /
    • 2016
  • The single layer latticed domes have attracted many designers and researchers's attention all of the world, because these structures as spatial structure are of great advantage in not only mechanical rationality but also function, fabrication, construction and economic aspect. But single layer latticed domes are apt to occur the unstable phenomena that are called "buckling" because of the lack of strength of members, instability of structural shape, etc. In the case of latticed dome, there are several types of buckling mode such as overall buckling, local buckling, and member buckling according to the shape of dome, section type of member, the size of member, junction's condition of member and so on. There are many methods to increase the buckling strength of the single layer latticed dome, that is, with the change of geometrical shape of dome, the reinforcement of buckled member, etc. Therefore, the purpose of this study is to verify the reinforcement effect of buckled member when designers reinforce the buckled member to increase the buckling strength of single layer latticed dome with 3-way grid.

무보강 모살용접 각형강관 T형 접합부의 거동에 관한 실험적연구( II ) (An Experimental Study on the Behavior of Square Hollow Steel Section T-joints to be fillet-welded without Reinforcement)

  • 배규웅;문태섭
    • 한국강구조학회 논문집
    • /
    • 제8권3호통권28호
    • /
    • pp.35-45
    • /
    • 1996
  • The purpose of this paper is to investigate experimentally the strength and deformation of T-joints to improve the structural behavior of truss connection consisted in square hollow steel section. There are two-types to be changed in T-joint shape. One type is TP-series that a brace member is rotated to 45 degree, another type is TR-series that a chord member is rotated to 45 degree. The most important results obtained from the 2nd experiment on the T-joints is as follow; The yielding strength and initial stiffness of TP-series increase more than a current type(TS-series) in $0.6{\leq}{\beta}(d/D){\leq}0.7(0.85{\leq}{\beta}$'$(={\sqrt2}{\cdot}{\beta}){\leq}1.0)$.

  • PDF

각형강관과 H형강보 접합부의 유한요소 모델링에 관한 연구 (An Investigation into the Finite element Modelling on connections of H-beam to S.H.S Column)

  • 이종석;변우정;이광훈;강석봉;박순규
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.68-75
    • /
    • 1995
  • In recent year, column member is used for square hollow section(5.H.5) and beam member is used for H-section. But 5.H.5 column has vulnerability because of low flexural stiffness between column and beam connection joints. To reinforce this vulnerability, 5.H.5 column filled with concrete and concrete slab connection compounded with H-beam is developed in many ways. In this paper, modelling of predicting behavior of various types of connections is studied using finite element method. k order to simulate the actual behavior, a three-dimensional modelling is used. A simple efficient contact algorithm with a new gap element is employed to simulate the interaction between 5.H.5 column and concrete, The modelling result$ are compared with the experimental results.

  • PDF

콘크리트의 휨압축강도에 미치는 부재깊이의 영향 (Effects of Specimen Depth on Flexural Compressive Strength of Concrete)

  • 이성태;김진근;이윤;김장호;양은익
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.115-120
    • /
    • 2000
  • Currently, in evaluating a flexural strength of a concrete member, the effect of specimen depth has not been systematically studied, even though its effect on ultimate strength of a section is very important. For all types of loading conditions, the trend is that the strength of a member tends to decrease when the member depth increases. In this study, the influence of specimen depth on flexural compressive strength of concrete member was examined experimentally. A series of C-shaped specimens subjected to axial compressive force and bending moment were tested using three geometrically similar specimens with different length-to-depth ratios(h/c=1, 2 and 4) which have compressive strength of 55MPa. The results indicate that the flexural compressive strength decreased as the specimen depth increased. A model equation was derived based on regression analyses of the experimental data. Also the results show that ultimate strain decreases as the specimen depth increases. Finally, a general model equation for the depth effect is proposed.

  • PDF