• Title/Summary/Keyword: melting study

Search Result 1,652, Processing Time 0.028 seconds

The Effect of Shielding Gas on Forming Characteristics for Direct Laser Melting (Direct Laser Melting 공정시 차폐가스가 성형 특성에 미치는 영향)

  • Han, S.W.;Shin, S.G.R.;Joo, B.D.;Lee, C.H.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.6
    • /
    • pp.334-339
    • /
    • 2013
  • Direct Laser Melting is a prototyping process whereby a 3-D part is built layer wise by melting the metal powder with laser scanning. This process is strongly influenced by the shielding gas and the laser operating parameters such as laser power, scan rate, layering thickness, and rescanning. The shielding gas is especially important in affecting the microstructure and mechanical properties. In the current study, fabrication experiments were conducted in order to analyze the effect of shielding gas on the forming characteristics of direct laser melting. Cylindrical parts were produced from a Fe-Ni-Cr powder with a 200W fiber laser. Surface quality, porosity and hardness as a function of the layering thickness and shield gas were evaluated. By decreasing the layering thickness, the surface quality improved and porosity decreased. The selection of which shield gas, Ar or $N_2$, to obtain better surface quality, lower porosity, and higher hardness was examined. The formability and mechanical properties with a $N_2$ atmosphere are better than those parts formed under an Ar atmosphere.

An Experimental Study on Close-Contact Melting in Horizontal Capsules with Circular or Rectangular Cross Sections (원형 및 사각단면을 가지는 수평캡슐에서의 접촉용해에 관한 실험적 연구)

  • Kim, Si-Pom;Lee, Chi-Woo
    • Solar Energy
    • /
    • v.13 no.1
    • /
    • pp.39-48
    • /
    • 1993
  • This empirical paper addresses the phenomena of the contact melting of PCM in horizontal capsules of circular and rectangular cross sections with various aspect ratio. The melting-rate tends to increase as the Stefan number increases. The case of rectangular tube displays larger melting-rate than that of circular tube, and the melting-rate increases as the aspect ratio decreasws for rectangular tubes. In case of circular tube, the effect of natural convection on the melting-rate is 6.1%, 8.6% and 11.2% according to Stefan number 0.0772, 0.1287 and 0.1802 respectively.

  • PDF

Preparation and Characterization of Piroxicam/Poloxamer Solid Dispersion Prepared by Melting Method and Solvent Method

  • Yu, Hang;Chun, Myung-Kwan;Choi, Hoo-Kyun
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • Solid dispersions of piroxicam were prepared by melting method using poloxamer as a carrier. The results of DSC and XRD studies showed that the amorphous farm of piroxicam coexisted with the crystalline form in the solid dispersions. However, the ratio of crystalline form of piroxicam in the solid dispersion prepared by melting method decreased in comparison with the same ratio of the solid dispersion prepared by solvent method. As the ratio of poloxamer in the solid dispersion increased, the ratio of the amorphous form of piroxicam in the solid dispersion increased. The dissolution rate of piroxicam from the solid dispersions was significantly higher than that from piroxicam powder. In comparison to the solid dispersion prepared by solvent method, the dissolution rate of piroxicam from the solid dispersion prepared by melting method was higher. As the ratio of poloxamer in the solid dispersion prepared by melting method increased, the initial dissolution rate decreased, however, the total amount dissolved at the end of the study increased.

Calculating the Threshold Energy of the Pulsed Laser Sintering of Silver and Copper Nanoparticles

  • Lee, Changmin;Hahn, Jae W.
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.601-606
    • /
    • 2016
  • In this study, in order to analyze the low-temperature sintering process of silver and copper nanoparticles, we calculate their melting temperatures and surface melting temperatures with respect to particle size. For this calculation, we introduce the concept of mean-squared displacement of the atom proposed by Shi (1994). Using a parameter defined by the vibrational component of melting entropy, we readily obtained the surface and bulk melting temperatures of copper and silver nanoparticles. We also calculated the absorption cross-section of nanoparticles for variation in the wavelength of light. By using the calculated absorption cross-section of the nanoparticles at the melting temperature, we obtained the laser threshold energy for the sintering process with respect to particle size and wavelength of laser. We found that the absorption cross-section of silver nanoparticles has a resonant peak at a wavelength of close to 350 nm, yielding the lowest threshold energy. We calculated the intensity distribution around the nanoparticles using the finite-difference time-domain method and confirmed the resonant excitation of silver nanoparticles near the wavelength of the resonant peak.

Heat and Flow Characteristics During Melting Process of a PCM Inside a Liquid Flexitank for Cargo Containers (화물 컨테이너용 액상 백 내부 PCM의 용융 과정에 대한 열유동 특성 해석)

  • Lilong Sun;Joon Hyun Kim;Jaehoon Na;Jaeyong Sung
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.1
    • /
    • pp.6-17
    • /
    • 2024
  • This study examined the natural convection heat flow characteristics of the melting process of PCM (palm oil) inside a liquid flexitank(bag) for a cargo container. A film heating element was installed on the bottom of the container, and numerical analysis was performed under heat flux conditions of 1,000 to 4,000 W/m2. As a result, the melt interface of the PCM rises to a nearly horizontal state over time. In the initial stage, conduction heat transfer dominates, but gradually waves at the cell flow and melt interfaces are formed due to natural convection heat transfer. As melting progresses, the Ra number increases parabolically, and the Nu number increases linearly and has a constant value. The Nu number rises slowly under low heat flux conditions, whereas under high heat flux conditions, the Nu number rises rapidly. As the heat flux increases, the internal temperature oscillation of the liquid phase after melting increases. However, under high heat flux conditions, excess heat exceeding the latent heat is generated, and the temperature of the molten liquid is raised, so the increase in melting rate decreases. Therefore, the appropriate heating element specification applied to a 20-ton palm oil container is 2,000 W/m2.

Numerical Analysis on Melting Phenomena and Phase Interface Change of Frozen Urea-aqueous Solution by Electric Heater (전기 히터 방식의 동결 우레아 해동 현상 및 상경계면 이동에 대한 수치해석)

  • Woo, Seongmin;Choi, Byungchul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.13-19
    • /
    • 2014
  • Urea-SCR system is the selective catalytic reduction to reduce nitrogen oxides ($NO_x$) emitted from diesel vehicles. The objective of this study is numerical analysis of 3-dimensional unsteady melting problems of frozen urea by using an electric heater. It can be applied to determine capacity of power with respect to time and the location of the urea suction pipe in urea storage tank. The study includes the change of liquid volume fraction, temperature profiles and a influence of natural convection by using the commercial software STAR-CCM+(v7.06). The accuracy of the numerical analysis is estimated by comparisons with experimental data. After validation, a numerical analysis for freezing urea is conducted with four different heating power. From the results, it was found that relation of velocity of phase interface and amount of melting urea by increasing heating power in a container. There is also a difference in trend between velocity of phase interface and amounts of melting urea because of effect of natural convection.

Effect of Powder Morphology on the Deposition Quality for Direct Laser Melting (Direct Laser Melting 공정시 분말 형태가 적층 품질에 미치는 영향)

  • Lee, S.H.;Kil, T.D.;Han, S.W.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.25 no.3
    • /
    • pp.195-202
    • /
    • 2016
  • Direct laser melting(DLM) is an additive manufacturing process that can produce parts by solidification of molten metallic powder layer by layer. The properties of the fabricated parts strongly depend on characteristics of the metallic powder. Atomized powders having spherical morphology have commonly been used for DLM. Mechanical ball-milling is a powder processing technique that can provide non-spherical solid powders without melting. The aim of the current study was to investigate the effect of powder morphologies on the deposition quality in DLM. To characterize the morphological effect, the performances of spherical and non-spherical powders were compared using both single- and multi-track DLM experiments. DLM experiments were performed with various laser process parameters such as laser power and scan rate, and the deposition quality was evaluated. The surface roughness, cross-section bead shape and process defects such as balling or non-filled area were compared and discussed in this study.

A Performance Estimation of Ground Source Heat Pump System Used both for Heating and Snow-melting (난방.융설 겸용 지열원 히트펌프시스템의 운전성능 평가)

  • Choi, Deok-In;Kim, Joong-Hun;Hwang, Kwang-Il
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.1
    • /
    • pp.7-12
    • /
    • 2012
  • This study proposes a hybrid geothermal system combined with heating mode and snow-melting mode for winter season in order to increase the annual operating efficiency of the GSHP(Ground Source Heat Pump). The purpose of this study is to get effectiveness of the hybrid geothermal system by the site experiments. In case of snow-melting only mode, the GSHP COP is 0.7 higher than system COP in average. And in case of hybrid mode, heating GSHP COP is 0.5 higher than snow-melting GSHP COP. And it is also found out that all COP obtained through measurement periods is higher than nominal COPs given by GSHP manufacturer. As a conclusion, it is clear that the proposed hybrid geothermal system is expected as a highly efficient system.

A study on recovery of Platinum Group Metals(PGMs) from spent automobile catalyst by melting technology (용융기술(熔融技術)을 이용(利用)한 자동차폐촉매(自動車廢觸媒)에서의 백금족(白金族) 금속(金屬) 회수(回收) 연구(硏究))

  • Park, Hyun-Seo
    • Resources Recycling
    • /
    • v.20 no.2
    • /
    • pp.74-81
    • /
    • 2011
  • The dry method and wet method are currently used for the recovery of platinum group metals (Pt, Rh, Pd) contained in spent automobile catalysts. The study herein aims to identify the melting condition and optimum collector metal in accordance with a comparison of each concentration change in melting waste catalysts, using Fe and Cu in a basic experiment to recover waste catalysts through application of the dry melting method. As a summarized result of the experiment herein, it was determined to be more advantageous to use Fe as a parent material rather than Cu from the aspect of recollection rate, and the concentration change rate of platinum group metals within slag was greatly enhanced at $1,600^{\circ}C$ melting condition rather than at $1,500^{\circ}C$ in terms of melting processing temperature. The mean concentration of platinum group metals - Rh, Pd and Pt - within slag after a melting process at $1,600^{\circ}C$ were 6.21 ppm, 5.98 ppm and 6.97 ppm. The Rh and Pd were 50.58% and 55.31% respectively greater than the concentration change rate of platinum group metals in slag at a melting temperature of $1,500^{\circ}C$. However, since the initial concentration of Pt within the waste catalysts was 12.9 ppm, is relatively low, it was difficult to compare concentration change rates after the melting process.