• 제목/요약/키워드: melting study

검색결과 1,652건 처리시간 0.026초

A Study on the Melting Morphology of Graphite in Cast Iron

  • Lim, Chang-Hee;Ra, Hyung-Yong
    • 한국주조공학회지
    • /
    • 제5권4호
    • /
    • pp.243-257
    • /
    • 1985
  • Many authors have studied the solidification process of cast iron and the effect of grain boundaries in austenite shell on the growth of spheroidal graphite. But, the studies on the melting morphology of cast iron are rare and the effect of grain boundaries in austenite shell on the melting procedure of spheroidal graphite cast iron is unknown. Therefore, in this work, the melting procedure of cast iron and the role of grain boundaries in austenite shell on the melting of spheroidal graphite have been studied. The main results are summarized as follows. 1. In white cast iron containing silicon, melting initiates at the interface between austenite matrix and temper carbon which was decomposed from $Fe_3C$ during heating. 2. In gray cast iron, melting initiates at the boundary of eutectic cell where elements with low melting temperature are condensed. The dissolution of kish graphite is difficult. 3. In spheroidal graphite cast iron containing little phosphor, melting initiates at the outer region of austenite shell in which silicon is condensed. In this case, grain boundaries in austenite shell give little effect on the melting procedure of spheroidal graphite. 4. In spheroidal graphite cast iron containing phosphor above 0.3 wt%, its melting phenomena are changed with heating rate due to the existence of steadite. In this case, it can be concluded that liquid phase of steadite, which segregated on outer region of austenite shell, moves to spheroidal graphite-austenite interface along the grain boundaries in austenite shell.

  • PDF

상변화 물질을 이용한 잠열축열조에 관한 기초 연구 - 수평원관내의 내향용융 열전달 실험 - (A Study of Heat Storage System with Phase Change Material - Inward Melting in a Horizontal Cylinder)

  • 조남철;김준근;이채문;임장순
    • 태양에너지
    • /
    • 제9권3호
    • /
    • pp.44-54
    • /
    • 1989
  • Heat transfer phenomena during inward melting process of the phase change material were studied experimentally. N-docosane paraffin [$C_{22}H_{46}$] is used for phase change material and its melting temperature is $42.5^{\circ}C$. Experiments were performed for melting of an initially no-sub cooled or subcooled solid in a horizontal cylinder, in order to compare and investigate the radial temperature distribution, ratio of melting and melted mass, various energy components stored from the cylinder wall, figure of the melting front in the horizontal cylinder. The solid-liquid interface motion during phase change was recorded photographically. The experimental results reaffirmed the dominant role played by the conduction at early stage, by the natural convection at longer time during inward melting in the horizontal cylinder. Ratio of melting and melted mass are more influenced by wall temperature, rather than by the initial temperature of solid. The latent energy is the largest contributor to the total stored energy.

  • PDF

저융점 복합사를 이용한 열융착 직물의 제조(I) - 헤드타이를 중심으로 - (Preparation of Thermal Bonding Fabric by using-low-melting-point Bicomponent Filament Yarn - Head tie -)

  • 지명교;이신희
    • 한국의류산업학회지
    • /
    • 제11권3호
    • /
    • pp.474-480
    • /
    • 2009
  • The purpose of this study is to prepare the hardness of polyester(PET) fabric by thermal bonding with low melting component of bicomponent fiber and to describe the change of physical properties of thermal bonded PET fabrics. The PET fabrics were prepared with regular PET fiber as warp and bicomponent fiber as weft. The bicomponent fiber of sheath-core type were composed with a regular PET core and low melting PET sheath. The thermal bonding of PET fabric was carried out in pin tenter from 120 to $195^{\circ}C$ temperature range for 60 seconds. In this study, we investigated the physical properties and melting behavior of PET fiber and the effect of the temperature of the pin tenter on the thermal bonding, mechanical properties. Melting peak of warp showed the thermal behavior of general PET fiber. However, melting peak of weft fiber(bicomponent fiber) showed the double melting peak. The thermal bonding of the PET fabric formed at about temperature of lower melting peak. The optimum thermal bonding conditions for PET fabrics was applied at $190{\sim}195^{\circ}C$ for 60seconds by pin tenter. On the other hand, the tensile strength of the PET fabric decreased with an increasing temperature of thermal bonding.

음향 흐름에 의한 고-액 상변화 열 전달의 촉진 (Acoustic Enhancement of Solid-Liquid Phase Change Heat Transfer)

  • 박설현;오율권
    • 에너지공학
    • /
    • 제11권3호
    • /
    • pp.262-268
    • /
    • 2002
  • The present paper investigated the effect of ultrasonic vibrations on the melting process of phase-change materials (PCM). Furthermore, the present study considered constant heat-flux boundary condition, whereas many of the previous researches had adopted constant wall-temperature condition. The results of the present study revealed that ultrasonic vibrations accompanied the effects like acoustic streaming, cavitation, and thermally-oscillating flow. Such effects are a prime mechanism in the overall melting process when ultrasonic vibrations are applied. They speed up the melting process as much as 2.5 times, compared with the result of natural melting. Also, energy can be saved by applying ultrasonic vibrations to the natural melting. In addition, temperature and Nusselt numbers over time provided a conclusive evidence of the important role of ultrasonic vibrations on the melting phenomena.

액상용기에서 초음파에 의한 열전달촉진 (Enhancement of bent transfer in the liquid bath by ultrasound)

  • 강원종;오율권
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.655-658
    • /
    • 2002
  • The present paper investigated the effect of ultrasonic vibrations on the melting process of a phase-change material (PCM). Furthermore, the present study considered constant heat-flux boundary conditions unlike many of the previous researches, which had adopted constant wall-temperature conditions. Therefore in the study, modified dimensionless numbers such as Stefan and Rayleigh were adopted to represent heat transfer results. The experimental results revealed that ultrasonic vibrations accompanied the effects like agitation, acoustic streaming, cavitation, and oscillating fluid motion, accelerating the melting process as much as 2.5 times, compared with the result of natural melting (i. e., the case without ultrasonic vibration). Such effects are believed to be a prime mechanism in the overall melting process when ultrasonic vibrations were applied. Subsequently, energy could be saved by applying the ultrasonic vibrations to the natural melting In addition, various time-wise dimensionless numbers provided a conclusive evidence of the important role of the ultrasonic vibrations on the melting phenomena of the PCM.

  • PDF

소각재 용융슬래그의 건설재료로서 재활용시 적합성 평가 (The evaluation of the compatibility of recycling melting slag from incinerator ashes as construction materials)

  • 한영수;이재영
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2001년도 총회 및 춘계학술발표회
    • /
    • pp.30-33
    • /
    • 2001
  • Melting is one of the most effective treatments for stabilizing heavy metals and also creates high value by-products. In this study, authors evaluated the leaching characteristics of heavy metals in melting slag obtained from incinerator ashes. In order to evaluate the environmental compatibility of the recycled melting slag, the samples analysed various leaching tests of heavy metals were raw incinerator ashes, melting slag and the construction materials recycled from melting slag. As the results: (1) The leaching concentrations of tile melting slag were lower than those of the raw incinerator ashes in the experiment performed in accordance with Korea Standard Leaching Test (KSLT). (2) The result of leaching test with the method of RG Min-StB 93. FGSV Forschungsgesellschaft fur Stra $\beta$ en- und Verkehrswesen) met the requirements in German. (3) The compressive strengths of mortar samples used for evaluating the feasibility of recycling the melting slag as construction materials also showed the suitable range for recycling (4) Melting slag was considered the stable materials with respect to the chemical stability against chemical solutions with various pH conditions.

  • PDF

A study of size and frictional effect on the evolution of melting PartII: Twin screw extruder

  • Kim, D.S.;Lee, B.K.;Kim, H.S.;Lee, J.W.;C.G. Gogos
    • Korea-Australia Rheology Journal
    • /
    • 제13권2호
    • /
    • pp.89-95
    • /
    • 2001
  • Effects of particulate size and frictional characteristics were examined on the melting behavior of PP(polypropylene) in a twin screw extruder. Powder and pellet types of PP were used and each component was blended with PE(polyethylene) wax and clay, respectively. It was observed that small size particulates, 1.e. powder systems exhibit accelerated melting behavior; and it was also found that the abrasive auditive acts as an effective agent for fast melting of PP powder. Retardation of melting due to the reduced friction was observed in both types of PP, contrary to the result found in a batch mixer. The tendency observed in variation of torque and exit temperature was explained in terms of frictional effect and length of compacted region formed during evolution of melting.

  • PDF

폐기물 열분해/용융 소각 시스템의 용융로 Scale-up 연구 (Scale-up of Melting Chamber for a Pyrolysis Melting Incinemtion System)

  • 양원;김봉근;류태우;전금하
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2007년도 제34회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.168-175
    • /
    • 2007
  • Ash melting chamber is one of the key facility of the pyrolysis-melting incineration system, and it should be designed and operated very carefully for avoiding solidification of slag. In this study, an example of numerical and experimental scale-up process of the melting chamber, in which high speed air is injected to the molten slag and generates bubbles, which enhances agitation of the slag and char combustion, is presented. Cold flow test, combustion and melting test in a lab-scale (30 kg/hr) chamber and a pilot scale (200 kg/hr) chamber. Minimum energy for maintaining molten slag is derived, and it was found that the molten slag can be maintained efficiently by concentrating heat into the bubbling slag.

  • PDF

Molecular Dynamics Study on Atomistic Details of the Melting of Solid Argon

  • Han, Joo-Hwan
    • 한국세라믹학회지
    • /
    • 제44권8호
    • /
    • pp.412-418
    • /
    • 2007
  • The atomic scale details of the melting of solid argon were monitored with the aid of molecular dynamics simulations. The potential energy distribution is substantially disturbed by an increase in the interatomic distance and the random of set distance from the lattice points, with increasing temperature. The potential energy barriers between the lattice points decrease in magnitude with the temperature. Eventually, at the melting point, these barriers can be overcome by atoms that are excited with the entropy gain acquired when the atoms obtain rotational freedom in their atomic motion, and the rotational freedom leads to the collapse of the crystal structure. Furthermore, it was found that the surface of crystals plays an important role in the melting process: the surface eliminates the barrier for the nucleation of the liquid phase and facilitates the melting process. Moreover, the atomic structure of the surface varies with increasing temperature, first via surface roughening and then, before the bulk melts, via surface melting.

초음파 진동이 상변화 열전달에 미치는 영향에 관한 실험적 연구 (An Experimental Study of the effect of Ultrasonic Vibration on Phase Change Heat Transfer)

  • 박설현;서동표;차경옥;오율권
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.297-303
    • /
    • 2000
  • Natural convection heat transfer have been paid attention because it can be applied to various areas such as cooling of nuclear reactor, heat storing system and so on. Among such applications, the melting process of phase change material(PCM) has been actively studied. However most researches have focused on phase change heat transfer in natural melting. Therefore, In this paper, ultrasonic vibration was adopted to increase the melting rate. In addition, general relationship and corelationship between melting with ultrasonic vibration and melting without ultrasonic vibration have been established during the melting of PCM.

  • PDF