• 제목/요약/키워드: melting process

검색결과 1,007건 처리시간 0.033초

음향 흐름에 의한 고-액 상변화 열 전달의 촉진 (Acoustic Enhancement of Solid-Liquid Phase Change Heat Transfer)

  • 박설현;오율권
    • 에너지공학
    • /
    • 제11권3호
    • /
    • pp.262-268
    • /
    • 2002
  • The present paper investigated the effect of ultrasonic vibrations on the melting process of phase-change materials (PCM). Furthermore, the present study considered constant heat-flux boundary condition, whereas many of the previous researches had adopted constant wall-temperature condition. The results of the present study revealed that ultrasonic vibrations accompanied the effects like acoustic streaming, cavitation, and thermally-oscillating flow. Such effects are a prime mechanism in the overall melting process when ultrasonic vibrations are applied. They speed up the melting process as much as 2.5 times, compared with the result of natural melting. Also, energy can be saved by applying ultrasonic vibrations to the natural melting. In addition, temperature and Nusselt numbers over time provided a conclusive evidence of the important role of ultrasonic vibrations on the melting phenomena.

액상용기에서 초음파에 의한 열전달촉진 (Enhancement of bent transfer in the liquid bath by ultrasound)

  • 강원종;오율권
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.655-658
    • /
    • 2002
  • The present paper investigated the effect of ultrasonic vibrations on the melting process of a phase-change material (PCM). Furthermore, the present study considered constant heat-flux boundary conditions unlike many of the previous researches, which had adopted constant wall-temperature conditions. Therefore in the study, modified dimensionless numbers such as Stefan and Rayleigh were adopted to represent heat transfer results. The experimental results revealed that ultrasonic vibrations accompanied the effects like agitation, acoustic streaming, cavitation, and oscillating fluid motion, accelerating the melting process as much as 2.5 times, compared with the result of natural melting (i. e., the case without ultrasonic vibration). Such effects are believed to be a prime mechanism in the overall melting process when ultrasonic vibrations were applied. Subsequently, energy could be saved by applying the ultrasonic vibrations to the natural melting In addition, various time-wise dimensionless numbers provided a conclusive evidence of the important role of the ultrasonic vibrations on the melting phenomena of the PCM.

  • PDF

수평원관내 체적변화를 고려한 얼음의 용용시 전열특성에 관한 연구 (Melting of Ice Inside a Horizontal Cylinder under the Volume Change)

  • 조남철;김동춘;이채탈;임장순
    • 설비공학논문집
    • /
    • 제13권12호
    • /
    • pp.1266-1274
    • /
    • 2001
  • Heat transfer phenomena during melting process of the phase change material (ice) was studied by numerical analysis and experiments. In a horizontal ice storage tube, the natural convection caused an increase in melting rate. However, the reduction of the heating surface area caused a decrease in melting rate. Therefore, during the melting process of ice in a horizontal cylinder, the reduction of the heating surface area should be considered. Under the same heating wall and initial water temperature condition, the melting rate became higher for $V_s/V_tot/=0.545 \;than \;that\; for\; V_s/V_tot$/=1.00 due to the difference in the reduction of heating surface area. A modified melting model considering the equivalent thermal conductivity of liquid phase and volume reduction was proposed. The results of the model were compared with the measured values and found to be in good agreement.

  • PDF

QFN 패키지의 Resin Bleed와 Melting 검출 알고리즘 (Algorithm for Segmenting Resin Bleed and Melting on the Surface of QFN Packages)

  • 왕명걸;박덕천;주효남;김준식
    • 제어로봇시스템학회논문지
    • /
    • 제15권9호
    • /
    • pp.899-905
    • /
    • 2009
  • There are many different types of surface defects on semiconductor Integrated Chips (IC's) caused by various factors during manufacturing process, such as Scratch, Flash, Resin bleed, and Melting. These defects must be detected and classified by an inspection system for productivity improvement and effective process control. Among defects, in particular, Resin bleed and Melting are the most difficult ones to classify accurately. The brightness value and the shape of Resin bleed and Melting defects are so similar that normally it is difficult to classify the Resin bleed and Melting. In this paper, we propose a segmenting method and a set of features for detecting and classifying the Resin bleed and Melting defects.

연료전지 자동차의 물탱크 해빙과정에 대한 수치해석적 연구 (Numerical Analysis of Melting Process in a Water Tank for Fuel-cell Vehicles)

  • 김학구;정시영;허남건;임태원;박용선
    • 설비공학논문집
    • /
    • 제19권8호
    • /
    • pp.585-592
    • /
    • 2007
  • Good cold start characteristics are essential for satisfactory operation of fuel cell vehicles. In this study, the melting process has been numerically investigated for a water tank used in fuel cell vehicles. The 2-D model of the tank containing ice and plate heaters was assumed and the unsteady melting process of the ice was calculated. The enthalpy method was used for the description of the melting process, and a FVM code was used to solve the problem. The feasibility study compared with other experiment showed that the developed program was able to describe the melting process well. From the numerical analysis carried out for different wall temperatures of the pate heaters, some important design factors could be found such as local overheating and pressurization in the tank.

연료전지 자동차의 물탱크 해빙과정에 대한 수치해석적 연구 (Numerical analysis of melting process in a water tank for fuel-cell vehicles)

  • 김학구;정시영;허남건;임태원;박용선
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.74-79
    • /
    • 2006
  • Good cold start characteristics are essential for satisfactory operation of fuel cell vehicles. In this study, the melting process has been numerically investigated for a water tank frozen in cold weather The 2-D model of the tank containing ice and plate heaters was assumed and the unsteady melting process of the ice was calculated. The enthalpy method was used for the description of the melting process, and a FVM code was used to solve the problem. The feasibility study compared with other experiment showed that the developed program was able to describe the melting process well. From the numerical analysis carried out for different wall temperatures of the pate heaters, some important design factors could be found such as local overheating and pressurization in the tank.

  • PDF

쾌속조형 듀라폼몰도와 저융점합금을 이용한 주얼리용 마스터패턴 제작에 관한 연구 (Study of Manufacturing Jewelry Master Pattern by Using the DuraForm Rapid Prototyping Mold and the Low Melting Alloy)

  • 주영철;송오성
    • 한국주조공학회지
    • /
    • 제22권5호
    • /
    • pp.265-270
    • /
    • 2002
  • A novel jewelry master pattern manufacturing process which reduce manufacturing steps by employing a Duraform rapid prototyping mold and a low melting alloy has been suggested. The novel process follows the steps of 'jewelry 3D CAD design ${\rightarrow}$ Durafrom RP mold ${\rightarrow}$ low melting alloy master pattern' while the previous process follows more complicated steps of 'jewelry idea sketch ${\rightarrow}$ detailed drawing ${\rightarrow}$ wax carving ${\rightarrow}$ flask ${\rightarrow}$ silver master pattern.' An upper and a lower part of molds have been manufactured of Duraform powder, of which melting point is $190^{\circ}C$. A maser pattern was manufactured by pouring a low melting alloy of Pb-Sn-Bi-Cd, so called Woods Metal, of which melting point is $70^{\circ}C$, into the mold. The master pattern is a shape of a disk of 20mm diameter that contains various design factors. The variations of dimensions, surface roughness, surface pore ratio were measured by an optical microscope, a surface roughness profilometer, and a Rockwell hardness tester. The pattern made of were maeasured by an optical microscope, a surface roughness profilometer, and a Rockwell hardness tester. The pattern made of low melting alloy has sufficient surface hardness, and surface pore ratio to be used as the jewelry master pattern.

가스화 용융로의 운전성능 예측기법에 관한 연구 (A Study of Operation Performance Prediction Method for the Gasification Melting Furnace)

  • 이민도;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.43-49
    • /
    • 2005
  • Social interest and request about low pollution waste treatment process are growing and gasification melting method, as a new technology concept, is risen. The necessity of engineering analysis to determine design standards and operation condition is required. In this study, the objective and function of components and operation process of various gasification melting furnaces such as shaft type, fluidized bed and Rotary Kiln type gasification melting furnace are reviewed and the design standard and operation range of gasification melting furnace are determined by inspecting the change of output and operation condition with input condition change.

  • PDF

Molecular Dynamics Study on Atomistic Details of the Melting of Solid Argon

  • Han, Joo-Hwan
    • 한국세라믹학회지
    • /
    • 제44권8호
    • /
    • pp.412-418
    • /
    • 2007
  • The atomic scale details of the melting of solid argon were monitored with the aid of molecular dynamics simulations. The potential energy distribution is substantially disturbed by an increase in the interatomic distance and the random of set distance from the lattice points, with increasing temperature. The potential energy barriers between the lattice points decrease in magnitude with the temperature. Eventually, at the melting point, these barriers can be overcome by atoms that are excited with the entropy gain acquired when the atoms obtain rotational freedom in their atomic motion, and the rotational freedom leads to the collapse of the crystal structure. Furthermore, it was found that the surface of crystals plays an important role in the melting process: the surface eliminates the barrier for the nucleation of the liquid phase and facilitates the melting process. Moreover, the atomic structure of the surface varies with increasing temperature, first via surface roughening and then, before the bulk melts, via surface melting.

분할된 핀붙이 전열면상에서의 얼음의 용융 (Melting of ice on the heating plate with split fins)

  • 홍희기;김무근
    • 설비공학논문집
    • /
    • 제12권1호
    • /
    • pp.67-74
    • /
    • 2000
  • One of the important application of a contact melting process is a latent thermal energy storage owing to its high heat flux. In some previous works, the split fins have been employed in order to enhance the melting speed. In the present work, the close contact melting was experimentally investigated using an ice as specimen for both split and non-split fins. It was shown that the contact melting by split fins increases the melting rate compared to that of non-split ones.

  • PDF