• 제목/요약/키워드: melt synthesis

검색결과 75건 처리시간 0.03초

New Processing of LED Phosphors

  • Toda, Kenji
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권5호
    • /
    • pp.225-228
    • /
    • 2012
  • In order to synthesize LED phosphor materials, we have applied three novel synthesis techniques, "melt synthesis", "fluidized bed synthesis" and "vapor-solid hybrid synthesis", in contrast with the conventional solid state reaction technique. These synthesis techniques are also a general and powerful tool for rapid screening and improvements of new phosphor materials.

Eutectic Ceramic Composites by Melt-Solidification

  • Goto, Takashi;Tu, Rong
    • 한국세라믹학회지
    • /
    • 제56권4호
    • /
    • pp.331-339
    • /
    • 2019
  • While high-temperature ceramic composites consisting of carbides, borides, and nitrides, the so-called ultra-high-temperature ceramics (UHTCs), have been commonly produced through solid-state sintering, melt-solidification is an alternative method for their manufacture. As many UHTCs are binary or ternary eutectic systems, they can be melted and solidified at a relatively low temperature via a eutectic reaction. The microstructure of the eutectic composites is typically rod-like or lamellar, as determined by the volume fraction of the second phase. Directional solidification can help fabricate more sophisticated UHTCs with highly aligned textures. This review describes the fabrication of UHTCs through the eutectic reaction and explains their mechanical properties. The use of melt-solidification has been limited to small specimens; however, the recently developed laser technology can melt large-sized UHTCs, suggesting their potential for practical applications. An example of laser melt-solidification of a eutectic ceramic composite is demonstrated.

Novel green Sr4ScAl3O10:Eu2+ phosphor prepared by the melt quenching technique

  • Toda, Kenji;Iwaki, Masato;Katsu, Minenori;Kamei, Shin-nosuke;Kim, Sun-Woog;Hasegawa, Takuya;Muto, Masaru;Yamanashi, Ryota;Sakamoto, Tatsuya;Ishigaki, Tadashi;Uematsu, Kazuyoshi;Sato, Mineo;Yoon, Dae-Ho
    • Journal of Ceramic Processing Research
    • /
    • 제20권3호
    • /
    • pp.276-279
    • /
    • 2019
  • New green-emitting Sr4ScAl3O10:Eu2+ phosphor was prepared using a novel melt quenching synthesis method. The temperature of raw materials irradiated with the strong light of the Xe arc-lamp was rose up to about 2273 K, followed by a sharp drop in the temperature after turn off the lamp. This method is a useful tool for rapid screening of novel phosphor materials.

The latest development in the preparation of indium phosphide (InP) poly- crystals and single crystals

  • Guohao Ren;Kyoon Choi;Eui-Seok Choi;Myung-Hwan Oh
    • 한국결정성장학회지
    • /
    • 제13권5호
    • /
    • pp.222-229
    • /
    • 2003
  • InP crystal is an increasingly important semiconductor material in the application of long-wave optoelectronic and high frequency devices. The equilibrium vapor pressure of phosphorus at the melting point of InP is so high that the synthesis process is very difficult. Liquid-encapsulated Czochralski (LEC) pulling from the melt at high pressure is a generally favored technique to grow InP single crystals. This technique involves two steps: the synthesis of polycrystalline powder and the growth of single crystal from the melt at high pressure. This article reviewed the latest development in the preparation of InP crystal and the evaluation on the crystal quality.

생체적합성과 생분해성을 갖는 폴리에스테르 중합체의 합성과 특성에 관한 연구(II) : Poly(1, 4-butanediol succinate)의 결정화 및 생분해성 (Synthesis and Characterization of Biocompatible and Biodegradable Polyesters (II):Crystallization and Biodegradation of Poly (1,4-butanediol succinate))

  • 송대경;성정석
    • 대한의용생체공학회:의공학회지
    • /
    • 제16권1호
    • /
    • pp.9-16
    • /
    • 1995
  • Biodegradable poly (I ,4-butanediol succinate) (PBS) was synthesized from 1,4-butanediol and succinic anhydride. The glass transition temperature of poly (I, 4-butanediol succinate) was revealed at $73^{\circ}C$. The crystallization and cold crystallization of the polymers were investigated as a function of holding time in melt state, cooling rate. reheating, and molecular weight. Chain scission and/or cmsslinking did not occur in the melt state at var.ious holding times. Slower scanning rate can allow more times for nucleation, rearrangement, and packing of the polymer chain, so the onset temperature of crystallization from the melt was increased. PBS crystallized from the melt was found to have spherulitic structure. The degradation behavior of PBS was studied under basic conditions and with microorganisms using the modified ASTM method. In the basic solution. PBS lost up to 85% of its mass within two days. Based upon visual observation, the crystalline structure of films composed of larger molecular weight polymers retained their crystallinity longer than similar structures in low molecular weight samples.

  • PDF

Al-Zn 혼합물을 용융 산화시켜 생성되는 ZnO 나노선의 성장에 미치는 산소압력의 영향 (Effect of Oxygen Pressure in the Synthesis of ZnO Nanowires through Melt Oxidation of Al-Zn Mixture)

  • 이근형
    • 한국재료학회지
    • /
    • 제24권6호
    • /
    • pp.301-304
    • /
    • 2014
  • The effect of oxygen pressure on the synthesis of ZnO nanowires by means of melt-oxidation of an Al-Zn mixture was investigated. The samples were prepared in oxygen ambient for 1 h at $1,000^{\circ}C$ under oxygen pressure ranging from 0.5 to 100 Torr. ZnO nanowires were formed at oxygen pressures lower than 10 Torr. As the oxygen pressure increased from 0.5 to 10 Torr, the width of the nanowires increased, but their length decreased. The ZnO nanowires had a needle shape, which became gradually thinner toward the tip. X-ray diffraction patterns showed that the nanowires had a hexagonal wurtzite structure. However, ZnO nanowires were not observed when the oxygen pressure increased from 10 Torr to 100 Torr. In roomtemperature cathodeluminescence spectra of the ZnO nanowires, the intensity of ultra-violet emission at 380 nm increased with decreasing oxygen pressure, which indicated that the lower the oxygen pressure, the better the crystallinity of the ZnO nanowires.

폴리아미드계 열가소성탄성체의 합성, 특성 및 응용 (Synthesis, Properties and Applications of Polyamide Thermoplastic Elastomers)

  • 이강석;최명찬;김성만;장영욱
    • Elastomers and Composites
    • /
    • 제45권3호
    • /
    • pp.156-164
    • /
    • 2010
  • 열가소성 탄성체(TPE)는 사용 온도 범위에서 일반 열경화성 고무와 같은 고무 탄성을 지니면서 용융 가공이 가능한 친환경 소재로써 산업 전반에 걸쳐 활용도가 꾸준히 증가하고 있다. 폴리아미드계 TPE (TPAE)는 하드세그멘트가 엔지니어링 플라스틱인 폴리아미드로 이루어져 있고, 소프트 세그먼트가 유리전이온도가 낮은 폴리에테르로 이루어진 다중 블록 공중합체로써 우수한 기계적 물성, 내화학성, 내열성 및 가공성을 나타낸다. 이러한 폴리아미드계 TPE는 하드 세그먼트와 소프트 세그먼트의 구조 및 상대적 조성에 따라 탄성체에서부터 연질 폴리아미드까지의 광범위한 특성이 발현되며, 또한, 다양한 무기 입자와의 하이브리드화를 통한 기능성 소재로의 활용이 기대되는 소재이다. 본 보문에서는 이러한 TPAE를 합성 할 수 있는 중합 방법과 특성 및 응용 분야에 대해 정리하였다.