• Title/Summary/Keyword: melt growth process

Search Result 116, Processing Time 0.037 seconds

Properties and defects of Mn-Zn Ferrite single crystals grown by the modified process (연속 성장법으로 성장된 Mn-Zn Ferrite 단결정 특성 및 결함)

  • 정재우;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.1 no.2
    • /
    • pp.23-33
    • /
    • 1991
  • Mn - Zn Ferrite has the natural characteristics of incongruent melting and the zinc oxide evaporation while the crystal is being grown. As a result of these, it comes into existence to be a non-uniform distribution of cations along the crystal growth axis and also Pt particles are usually precipitated into the crystals in Bridgman method since the melt zone is maintained for a long time in the crucible. These have bad effects on the magnetic properties of ferrites. But, to overcome these faults and then acquire the better single crystals. new modified growth method was developed and the growth factors were investigated as following: melt height in the crucible, surface tension and density of melt, the behavior of melt at interface, the shapes of crucible and solid -liquid interface, powder feeding rate, and the crystal growing speed. In additon, when we analyzed the compositional fluctuations of grown crystals, they were supressed within 1.5 mol% $Fe_20_3$, 2 mol% MnO, ZnO respectively with comparing to initial composition of crystal and the microstructures of crystals on the(110) plane were observed by optical microscope through the chemical etching technique and the magnetic properties were determined.

  • PDF

$\beta$-SiC Formation Mechanisms in Si Melt-C-SiC System (용융 Si-C-SiC계에서 $\beta$-SiC 생성기구)

  • 서기식;박상환;송휴섭
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.6
    • /
    • pp.655-661
    • /
    • 1999
  • ${\beta}$-SiC formation mechanism in Si melt-C-SiC system with varying in size of carbon source was investigated. A continuous reaction sintering process using Si melt infiltration method was adopted to control the reaction sintering time effectively. It was found that ${\beta}$-SiC formation mechanism in Si melt-C-SiC system was directly affected by the size of carbon source. In the Si melt-C-SiC system with large carbon source ${\beta}$-SiC formation mechanism could be divided into two stages depending on the reaction sintering time: in early stage of reaction sintering carbon dissolution in Si melt and precipitation of ${\beta}$-SiC was occurred preferentially and then SIC nucleation and growth was controlled by diffusion of carbon throughy the ${\beta}$-SiC layer formed on graphite particle. Furthmore a dissolution rate of graphite particles in Si melt could be accelerated by the infiltration of Si melt through basal plane of graphite crystalline.

  • PDF

Crystal growth from melt in combined heater-magnet modules

  • Rudolph, P.;Czupalla, M.;Dropka, N.;Frank-Rotsch, Ch.;KieBling, F.M.;Klein, O.;Lux, B.;Miller, W.;Rehse, U.;Root, O.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.5
    • /
    • pp.215-222
    • /
    • 2009
  • Many concepts of external magnetic field applications in crystal growth processes have been developed to control melt convection, impurity content and growing interface shape. Especially, travelling magnetic fields (TMF) are of certain advantages. However, strong shielding effects appear when the TMF coils are placed outside the growth vessel. To achieve a solution of industrial relevance within the framework of the $KRISTMAG^{(R)}$ project inner heater-magnet modules(HMM) for simultaneous generation of temperature and magnetic field have been developed. At the same time, as the temperature is controlled as usual, e.g. by DC, the characteristics of the magnetic field can be adjusted via frequency, phase shift of the alternating current (AC) and by changing the amplitude via the AC/DC ratio. Global modelling and dummy measurements were used to optimize and validate the HMM configuration and process parameters. GaAs and Ge single crystals with improved parameters were grown in HMM-equipped industrial liquid encapsulated Czochralski (LEC) puller and commercial vertical gradient freeze (VGF) furnace, respectively. The vapour pressure controlled Czochralski (VCz) variant without boric oxide encapsulation was used to study the movement of floating particles by the TMF-driven vortices.

Silicon melt motion in a Czochralski crystal puller (쵸크랄스키 단결정 장치에서의 실리콘유동)

  • 이재희;이원식
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.1
    • /
    • pp.27-40
    • /
    • 1997
  • The heat in Czochralski method is transfered by all transport mechanisms such as convection, conduction and radiation and convection is caused by the temperature difference in the molden pool, the rotations of crystal or crucible and the difference of surface tension. This study delvelops the simulation model of Czochralski growth by using the finite difference method with fixed grids combined with new latent heat treatment model. The radiative heat transfer occured in the surfce of the system is treated by calculating the view factors among surface elements. The model shows that the flow is turbulent, therefore, turbulent modeling must be used to simulate the transport phenomena in the real system applied to 8" Si single crystal growth process. The effects of a cusp magnetic field imposed on the Czochralski silicon melt are studied by numerical analysis. The cusp magnetic field reduces the natural and forced convection due to the rotation of crystal and crucible very effectively. It is shown that the oxygen concentration distribution on the melt/crystal interface is sensitively controlled by the change of the magnetic field intensity. This provides an interesting way to tune the desired O concentration in the crystal during the crystal growing.

  • PDF

Enhanced Superconducting Properties in Melt-processed (Y0.33Sm0.33Nd0.33) Ba2Cu3Oy Oxides in Air

  • Kim, So-Jung;Park, Jong-Kuk
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.6
    • /
    • pp.284-288
    • /
    • 2005
  • We have systematically studied the superconducting properties and flux pinning enhancement of $(Y_{0.33}Sm_{0.33}Nd_{0.33})\;Ba_2Cu_3O_y$ [(YSN)-123] composite oxides by melt growth process in air. A sample prepared by this method showed well-textured microstructure, and $(Y_{0.33}Sm_{0.33}Nd_{0.33})\;BaCuO_5$ [(YSN)211] nonsuperconducting particles were uniformly dispersed in large (YSN) 123 superconducting matrix. The sample showed a sharp superconducting transition at 91 K. The magnetization measurements of the (YSN)-123 sample exhibited the enhanced flux pinning, compared with $YBa_2Cu_3O_y$ (Y-123) sample without Sm and Nd. Critical current densities of (YSN)-123 sample was $2.5{\times}10^4 A/cm^2$ at 2 T and 77 K.

Effect of the grain boundary on the magnetic properties of the multi-seeded melt growth processed YBCO superconductors (다중종자결정성장법으로 제조한 YBCO 초전도체의 결정입계에 따른 자기적 성질의 영향)

  • Kim, Chan-Joong;Joo, Jin-Ho;Han, Young-Hee;Han, Sang-Chul;Sung, Tae-Hyun;Hong, Gye-Won;Kim, Ho-Jin
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.293-297
    • /
    • 2000
  • Multiseeding with (100)/(100) grain junctions of top-seeded melt growth (TSMG) processed YBCO superconductors was studied. The effect of the number of seeds and the distance between two seeds on the levitation forces and the trapped magnetic fields of the TSMG-processed YBCO samples was investigated. Multiple seeding shortened the processing time for the fabrication of TSMC-processed YBCO superconductors. The large magnetic field was trapped at the grain junction when two seeds was placed without spacing, while the amount of the magnetic field decreased when the seed distance increased. This is attributed to the increased amount of the residual melt phases around the grain junctions.

  • PDF

Levitation force and trapped magnetic field of top-seeded melt growth processed YBCO superconductors (종자결정성장법으로 제조한 YBCO 초전도체의 자기 부상력과 포획자력 특성)

  • 김찬중;홍계원
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.139-141
    • /
    • 2001
  • YBCO superconductors were prepared by top-seeded melt growth process using various numbers of seeds. The levitation forces and trapped magnetic fields of the top surfaces of the samples were measured using Nd-B-Fe permanent magnets It was found that the processing time was greatly reduced by multiple seeding, but the properties were decreased as the number of seeds was increased. The degradation of the properties is attributed to the presence of the nonsuperconducting phases at the grain boundaries as result of the entrapment of a residual melt at grain boundaries during melt processing.

  • PDF

Manganese Zinc Ferrite Singel Crystal Growth by Continuous Crystal Growing Method (연속성장법에 의한 Mn-Zn Ferrite 단결정 성장)

  • 정재우;오근호
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.7
    • /
    • pp.539-543
    • /
    • 1992
  • The continuous growth method was developed for Mn-Zn Ferrite single crystals. It is a new process that the polycrystalline MnχZn1-χFe2O4 raw materials are supplied continuously from the powder feeding system to the crucible heated by R.F. induction and melted in the crucible, and after the single crystals seed is attached to crucible's hole, the crystals are pulled downward with rotation. Growing the crystals by using the growth method different from the conventional Bridgman or Floating Zone method, we defined the factors having effect on the crystal growing through the pre-experiments. They are temperature distribution in the crucible, melt velocity according to its height, wettability between the crucible's bottom and melt. Therefore, Mn-Zn Ferrite single crystals were to be grown by attaining the appropriate melt height in the crucible, powder feeding rate, temperature gradient between the crucible and interface, crystal growing speed, and this method was confirmed to have possibility for single crystal growing.

  • PDF

Numerical Study of Melt Flow Pattern by Thermal Gradient of the Crucible in the Czochralski Process (초크랄스키법에서 도가니의 온도구배가 유동장에 미치는 영향에 대한 수치해석 연구)

  • Park, Jong-In;Han, Jeong-Whan
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.11
    • /
    • pp.734-739
    • /
    • 2009
  • It is well known that the temperature and the flow pattern of the crystal-melt interface affect the qualities of the single crystal in the Czochralski process. Thus the temperature profile in the growth system is very important information. This work focuses on controlling the temperature of the silicon melt with a thermal gradient of the crucible. Therefore, the side heater is divided into three parts and an extra heater is added at the bottom for thermal gradient. The temperature of the silicon melt can be strongly influenced and controlled by the electric power of each heater.

A Czochralski Process Design for Si-single Crystal O2 Impurity Minimization with Pulling Rate, Rotation Speed and Melt Charge Level Optimization (Pulling rate, rotation speed 및 melt charge level 최적화에 의한 쵸크랄스키 공정 실리콘 단결정의 O2 불순물 최소화 설계)

  • Jeon, Hye Jun;Park, Ju Hong;Artemyev, Vladimir;Hwang, Seon Hee;Song, Su Jin;Kim, Na Yeong;Jung, Jae Hak
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.369-380
    • /
    • 2020
  • Most mono-crystalline silicon ingots are manufactured by the Czochralski (Cz) process. But If there are oxygen impurities, These Si-ingot tends to show low-efficiency when it is processed to be solar cell substrate. For making single-crystal Si- ingot, We need Czochralski (Cz) process which melts molten Si and then crystallizing it with seed of single-crystal Si. For melts poly Si-chunk and forming of single-crystalline Si-ingot, the heat transfer plays a main role in the structure of Cz-process. In this study to obtain high-quality Si ingot, the Cz-process was modified with the process design. The crystal growth simulation was employed with pulling rate and rotation speed optimization. Studies for modified Cz-process and the corresponding results have been discussed. The results revealed that using crystal growth simulation, we optimized the oxygen concentration of single crystal silicon by the optimal design of the pulling rate, rotation speed and melt charge level of Cz-process.