• Title/Summary/Keyword: melt growth process

Search Result 116, Processing Time 0.024 seconds

The Effect of Oxide Layer Thickness to the Scale Defects Generation during Hot finish Rolling (열연사상 압연시 스케일 결함발생에 미치는 산화피막 두께의 영향)

  • 민경준
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.412-422
    • /
    • 1999
  • Scale defects generated on the strip surface in a tandem finishing mill line are collected from the strip trapped among the production mills by freezing the growing scale on the strip by the melt glass coating and shutting down the line simultaneously. The samples observed of its cross sectional figure showed the process of scale defect formation where the defects are formed at the base metal surface by thicker oxidized scale during each rolling passes. The properties of the oxidized layer growth both at rolling and inter-rolling are detected down sized rolling test simulating carefully the rolling condition of the production line. The thickness of the oxidized layer at each rolling pass are simulated numerically. The critical scale thickness to avoid the defect formation is determined through the expression of mutual relation between oxidized layer thickness and the lanks of the strip called quality for the scale defects. The scale growth of scale less than the critical thickness and also to keep the bulk temperature tuning the water flow rate and cooling time appropriately. Two units of Inerstand Cooler are designed and settled among the first three stands in the production line. Two units of scale defect is counted from the recoiled strip and the results showed distinct decrease of the defects comparing to the conventionaly rolled products.

  • PDF

The Effect of Y Addition on the Microstructure and Mechanical Property of Rapidly Solidified AZ91 Alloy (급속응고한 AZ91합금의 미세조직 및 기계적 특성에 미치는 Y첨가의 영향)

  • Choi, Jae-Young;Park, Hoon-Mo;Nam, Tae-Woon
    • Journal of Korea Foundry Society
    • /
    • v.20 no.6
    • /
    • pp.386-394
    • /
    • 2000
  • In the present study, the effect of yttrium addition on the microstructure and mechanical property of rapidly solidified AZ91 alloy by melt spinning process is estimated. As yttrium was added, the microstructure of RS ribbons and extrudates became finer than those of AZ91, and RE related phases $(Al_2RE)$ were formed. In the case of the addition of 3wt%Y, the microstructure of extrude showed the finest grain size. At room temperature, the AZ91 + 3wt%Y alloy showed the highest tensile strength, 352 MPA due to precipitation of ${\beta}(Mg_{17}Al_{12})$ phase and $Al_2RE$ phase. At the elevated temperature, the mechanical property of AZ91 + 3wt%Y alloy was higher than those of other Mg alloys. The reasons were that $Al_2Y$ compound was thermally stable and suppressed the grain growth. In contrast with $Al_2Y$ compounds, ${\beta}$ phase was thermally unstable and could not suppress the grain growth at the elevated temperature. Therefore, $Al_2Y$ phase contributed to improve the thermal stability of RS AZ91 alloy.

  • PDF

A study on the fabrication and properties of aluminum oxynitride spinel spinel(ALON) prepared by reaction sintering method (반응소결법을 이용한 Aluminum Oxynitride Spinel(ALON) 제조 및 특성연구)

  • 장복기;이종호;백용혁;문종하;신동선;임용무
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.3
    • /
    • pp.320-326
    • /
    • 1999
  • Aluminum oxynitride spinel (ALON) was synthesized by the direct melt nitridation (DMN) process using aluminum metal and aluminium oxide. The amount of ALON increased with increasing the reaction sintering temperature. The specimen containing up to 10 wt% Al showed ALON phase only when heat-treated beyond $1750^{\circ}C$. Whereas the specimen composed of more than 12 wt% Al showed unreacted AlN phase. Bulk density of reaction-sintered specimen was increased with increasing sintering temperature, except the speimen containing unreacted AlN where the density slightly decreased when heat-treated beyond $1750^{\circ}C$, Transgranular fracture mode was observed predominantly in the specimen with higher Al content.

  • PDF

The Effect of Misch Metal Addition on the Microstructure and Mechanical Property of Rapidly Solidified AZ91 Alloy (급속응고한 AZ91 합금의 미세조직 및 기계적 특성에 미치는 Misch metal 첨가의 영향)

  • Eum, Seung-Yeul;Park, Hoon-Mo;Nam, Tae-Woon
    • Journal of Korea Foundry Society
    • /
    • v.20 no.1
    • /
    • pp.29-37
    • /
    • 2000
  • The purpose of this study is to investigate the effect of misch metal addition on the microstructure and mechanical property of rapidly solidified AZ91 alloy by melt spinning process. As the contents of misch metal(rare earth element:Ce,La, Nd, Pr)was increased, the microstructure of RS ribbons and extrudates became finer than those of AZ91, and RE related phases($Al_{11}RE_3$, $Al_2RE$) were formed. At room temperature, the rapidly solidified AZ91+1 wt%Mm alloy showed the highest tensile strength, 430 MPa due to precipitation strengthening of${\beta}(Mg_{17}Al_{12})$ phase and Al11RE3 phase. At the elevated temperature, the mechanical property of AZ01+3 wt%Mm alloy was higher than those of other Mg alloys. The reasons were that $Al_{11}La_3$ phase was thermally stable and suppressed the grain growth. In contrast with $Al_{11}La_3$ phase, ${\beta}$ phase was thermally unstable and could not suppress the grain growth at the elevated temperature. Therefore, Al11RE3 phase contributed to improve the thermal stability of RS AZ91 Alloy.

  • PDF

Influence of Heat Treatment on Transformation Characteristics and Shape Recovery in Fe-X%/Mn-5Cr-5Co-4Si Alloy Ribbons (Fe-X%Mn-5Cr-5Co-4Si 합금 리본의 변태특성 및 형상기억능에 미치는 열처리 영향)

  • Kang, H.W.;Jee, K.K.;Jang, W.Y.;Kang, J.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.3
    • /
    • pp.160-166
    • /
    • 2001
  • The change of ribbon geometry, microstructure and shape recovery with Mn contents, wheel speed and various annealing temperature have been studied in Fe-X%Mn-5Cr-5Co-4Si (X%=15, 20, 24) shape memory alloy (SMA) ribbons rapidly solidfied by single roll chill-block melt-spinning process. The thickness and width of melt-spun ribbons are reduced, results in refining and uniformalizing grains with increasing wheel speed. In the ribbons melt-spun at a wheel speed of 15m/sec, both ${\varepsilon}$ and ${\alpha}^{\prime}$martensites are formed in ribbon 1 (15.5wt%Mn), while only ${\varepsilon}$ martensite is revealed in ribbon 2 (20.2wt%Mn) and ribbon 3 (23.5wt%Mn). The volume fraction of ${\varepsilon}$ martensite is decreased with increasing Mn contents, and those of ${\varepsilon}$ as well ${\alpha}^{\prime}$martensites are increased due to thermal stress relief and grain growth with increasing annealing temperature. Ms temperatures of the ribbons 1, 2 and 3 are fallen with increasing Mn contents. $M_s$ temperatures of the ribbons 1, 2 and 3 annealed at $300^{\circ}C$ for 3 min are risen abruptly, but are nearly constant even at higher annealing temperature, i.e., 400, 500 and $600^{\circ}C$ for 3 min. Shape recovery of the ribbons 1, 2 and 3 increased 30%, 52% and 69% with Mn contents, respectively. Shape recovery of ribbon 1 (15.5wt%Mn) formed ${\varepsilon}$ and ${\alpha}^{\prime}$martensites decreased because of the presence of ${\alpha}^{\prime}$martensite but those of ribbon 2 (20.2wt%Mn) and ribbon 3 (23.5wt%Mn) formed ${\varepsilon}$ martensite increased with increasing annealing temperature.

  • PDF

Growth of Superconductor YBa2Cu3O7-x Single Crystal by Flux Method (Flux법에 의한 초전도체 YBa2Cu3O7-x 단결정 육성)

  • 오근호;김호건;명중재
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.1
    • /
    • pp.48-54
    • /
    • 1990
  • YBa2Cu3O7-x(=YBCO) single crystals were grown by flux method and the growing process of crystals was investigated. YBCO and 3BaO-7CuO composition powders were mixed by the ratio of 25 : 75(wt%), and the mixtures were melted at 105$0^{\circ}C$ in a electric furnace with no temperature-gradient. Then the melt was cooled at a rate 2-1$0^{\circ}C$/h in the above furnace. YBCO single crystal plate with average size of $1.5\times$2.0$\times$0.1㎣ were obtained in the cavities between crucible and solidified ingot, and the single crystals were oriented to <001> direction. The ingots of flux parts were analyzed by XRD and EDS for the purpose of presuming the growing process of the crystals. It was assumed that the divorced eutectic reaction, by which YBCO crystals were grown first and then BaCuO2 and CuO crystals, occured in the case of cooling rate faster than 2$^{\circ}C$/h. When the cooling rate was 2$^{\circ}C$/h, it was assumed that quasi-equilibrium eutectic reaction occured, so that YBCO, BaCuO2 and CuO crystals were grown at the same time.

  • PDF

The Characteristics of Microstructure in the Semi-solid State of SKH51 at High Frequency Induction Heating (유도가열에 따른 SKH51의 반응고 미세조직 특성 연구)

  • Lee, Sang Yong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.3
    • /
    • pp.126-133
    • /
    • 2012
  • Semi-solid forming of the high melting point alloys such as steel is a promising near-net shape forming process for decreasing manufacturing costs and increasing the quality of the final products. This paper presents the microstructure characteristics of SKH51 (high speed tool steel) during heating and holding in the mushy zone between $1233^{\circ}C$ and $1453^{\circ}C$, which has been measured by differential scanning calorimetry (DSC). The results of heating/holding experiments showed that the grain size and the liquid fraction increased gradually with temperature up to $1350^{\circ}C$. The drastic grain growth occurred at heating above $1380^{\circ}C$. The strain-induced melt-activated (SIMA) process has been applied to obtain globular grains in the billet materials. Working by mechanical upsetting and successive heating of SKH51 into the temperatures in the mushy zone resulted in globular grains due to recrystallization and partial melting.

Microstructure of Co-base superalloy prepared by a investment casting (정밀주조법으로 제조된 Co계 초내열 합금의 미세구조)

  • Lee, Jung-Il;Lee, Ho Jun;Cho, Hyun Su;Paeng, Jong Min;Park, Jong Bum;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.6
    • /
    • pp.313-318
    • /
    • 2017
  • The microstructure of a cobalt-base superalloy (ECY768) obtained by an investment casting process was studied. This work focuses on the resulting microstructures arising from different melt and mold temperatures in normal industrial environmental conditions. The characterization of the samples was carried out using optical microscopy, field emission scanning electron microscopy and energy-dispersive spectroscopy. In this study, the as-cast microstructure is an ${\alpha}-Co$ (face-centered cubic) dendritic matrix with the presence of a secondary phase, such as $M_{23}C_6-type$ carbides precipitated at grain boundaries. These precipitates are the main strengthening mechanism in this type of alloy. Other minority phases, such as the MC-type phase, was also detected and their presence could be linked to the manufacturing process and environment.

Effect of Ca-doping on the superconducting properties of Nd-Ba-Cu-O bulks (Nd-Ba-Cu-O 벌크 초전도체의 초전도 특성에 미치는 Ca첨가제의 영향)

  • 이훈배;위성훈;유상임
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.346-350
    • /
    • 2002
  • The effect of Ca-doping on the superconducting properties of Nd-Ba-Cu-O bulk superconductors, fabricated by the oxygen-controlled melt growth process, has been systematically investigated. Various c-axis textured bulk samples were grown using precursors with the nominal compositions of N $d_{1.8-x}$C $a_{x}$B $a_{2.4}$C $u_{3.4}$ $O_{y}$ (x = 0.00, 0.02, 0.05, 0.10, 0.15) in a reduced oxygen atmosphere of 1% $O_2$ in Ar. Magnetization measurements revealed that the critical temperatures( $T_{c}$) were almost linearly depressed from 95K to 86K with increasing the Ca dopant from x = 0.0 to 0.15, respectively, and thus critical current densities( $J_{c}$) at 77K and for H//c-axis of specimens were gradually degraded with increasing x. Compositional analyses revealed that although the amounts of the Ca dopant both in NdB $a_2$C $u_3$ $O_{y}$(Nd123) and N $d_4$B $a_2$C $u_2$ $O_{10}$(Nd422) were increased with increasing x, only less than half of the initial Ca compositions were detected in melt-grown Ca-doped Nd-Ba-Cu-O bulk crystals. The supression of $T_{c}$ is attributed to an increased Nd substitution for the Ba site in the Nd123 superconducting matrix with increasing the amount of the Ca dopant.t.opant.t.t.t.t.t.

  • PDF

The Effects of Melting Temperature and Holding Time on Critical Characteristics of HTSC Fabricated by Melting Method (용융온도와 유지시간이 용융법으로 제작한 고온초전도체의 임계특성에 미치는 영향)

  • Lim, Sung-Hun;Han, Tae-Hee;Park, Kyung-Kuk;Yim, Seong-Woo;Cho, Dong-Eon;Han, Byoung-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.2
    • /
    • pp.154-161
    • /
    • 1998
  • The effects of melting temperature and holding time on the critical current density($J_c$) of $YBa_2Cu_3O_x$ based superconducting bulk fabricated by MPMG process were investigated. The amount of the formed $Y_2BaCuO_5$ phases increased with the melting temperature. However, the value of critical current density was highest at 1120 $^{\circ}C$. With this proper melting temperature, the effect of holding time on the critical characteristics was also investigated. In the case of Ag addition, the volume of the formed $Y_2BaCuO_5$ phase when the amount of Ag addition was 10 wt% and 20 wt% was observed to be highest at 20 minute and 40 minute respectively. But in the specimen without Ag, volume of $Y_2BaCuO_5$ phase increased as the holding time increased. The proper melting temperature and the holding time obtained were 1120 $^{\circ}C$ and 20 minute. The long holding time was not effective for the $J_c$ improvement as well as the formation of $Y_2BaCuO_5$.

  • PDF