• Title/Summary/Keyword: melon disease

Search Result 76, Processing Time 0.028 seconds

Co-Occurrence of Two Phylogenetic Clades of Pseudoperonospora cubensis, the Causal Agent of Downy Mildew Disease, on Oriental Pickling Melon

  • Lee, Dong Jae;Lee, Jae Sung;Choi, Young-Joon
    • Mycobiology
    • /
    • v.49 no.2
    • /
    • pp.188-195
    • /
    • 2021
  • The genus Pseudoperonospora, an obligate biotrophic group of Oomycota, causes the most destructive foliar downy mildew disease on many economically important crops and wild plants. A previously unreported disease by Pseudoperonospora was found on oriental pickling melon (Cucumis melo var. conomon) in Korea, which is a minor crop cultivated in the temperate climate zone of East Asia, including China, Korea, and Japan. Based on molecular phylogenetic and morphological analyses, the causal agent was identified as Pseudoperonospora cubensis, and its pathogenicity has been proven. Importantly, two phylogenetic clades of P. cubensis, harboring probably two distinct species, were detected within the same plots, suggesting simultaneous coexistence of the two clades. This is the first report of P. cubensis causing downy mildew on oriental pickling melon in Korea, and the confirmation of presence of two phylogenetic clades of this pathogen in Korea. Given the high incidence of P. cubensis and high susceptibility of oriental pickling melon to this disease, phytosanitary measures, including rapid diagnosis and effective control management, are urgently required.

The Incidence of Virus Diseases on Melon in Jeonnam Province during 2000-2002

  • Ko, Sug-Ju;Lee, Yong-Hwan;Cho, Myoung-Soo;Park, Jin-Woo;Choi, Hong-Soo;Lim, Geun-Cheol;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.23 no.3
    • /
    • pp.215-218
    • /
    • 2007
  • The occurrence and relative incidence of viruses including Cucumber mosaic virus (CMV), Zucchini yellow mosaic virus (ZYMV), Papaya rings pot virus (PRSV), and Watermelon mosaic virus (WMV), Cucumber green mottle mosaic virus (CGMMV), Kyuri green mottle mosaic virus (KGMMV), and Melon necrotic spot virus (MNSV) were surveyed from main melon (Cucumis melo L.) production areas in Jeonnam province during 2000-2002. Virus disease incidences of melon cultivating fields were 0% and 11% in spring and fall 2000; 40%, 2.1%, and 8.8% in spring, summer, and fall 2001; and 6.3 % in spring 2002 in main cultivated areas in Jeonnam province, respectively. Field disease incidences of melon virus infections were 0% and 18.8% in spring and fall 2000; 50%, 38.5%, and 82.6% in spring, summer, and fall 2001; and 47.4% in spring 2002, respectively. Total of 101 melon samples showing typical disease symptoms were collected from 2000 to 2002 and tested for virus infection by RT-PCR. Potyvirus-specific DNA fragments for WMV, ZYMV, and PRSV were amplified from 46, 5, and 4 samples, respectively. MNSV specific DNA fragment was amplified from 18 samples. CMV-specific DNA fragment was detected from only 3 samples.

Occurrence of Bacterial Soft Rot of Melon Caused by Erwinia carotovora subsp. carotovora (Erwinia carotovora subsp. carotovora에 의한 메론의 세균성무름병 발생)

  • 이영근;김령희
    • Korean Journal Plant Pathology
    • /
    • v.12 no.1
    • /
    • pp.116-120
    • /
    • 1996
  • Water-soaked spots or lesions were observed on fruits or stems of melon plants at house-melon farms in Andong, Korea. The symptoms developed to soft rot of the fruits of wilting of the whole plants. The causal organism isolated from the water-soaked le-sions was identified as Erwinia carotovora subsp. carotovora based on the morphological and physiological characteristics. The causal bacterium was susceptible to not only two kinds of medical antibiotics but also two kinds of agrochemicals tested. Since the bacterial soft rot is a first described bacterial disease in melon in Korea, we propose to name the disease as "bacterial soft rot of melon".

  • PDF

First Report of Melon Soft Rot Disease Caused by Pectobacterium brasiliense in Korea

  • Kyoung-Taek Park;Leonid N. Ten;Chang-Gi Back;Soo-Min Hong;Seung-Yeol Lee;Jeung-Sul Han;Hee-Young Jung
    • Research in Plant Disease
    • /
    • v.29 no.3
    • /
    • pp.310-315
    • /
    • 2023
  • In May 2021, characteristic soft rot symptoms, including soft, watery, slimy, black rot, wilting, and leaf collapse, were observed on melon plants (Cucumis melo) in Gokseong, Jeollanam-do, Korea. A bacterial strain, designated KNUB-06-21, was isolated from infected plant samples, taxonomically classified, and phylogenetically analyzed using 16S rRNA and housekeeping gene sequencing. Strain KNUB-06-21 was also examined for compound utilization using the API ID 32 GN system and strain KNUB-06-21 was identified as Pectobacterium brasiliense. Subsequent melon stem inoculation studies using strain KNUB-06-21 showed soft rot symptoms similar to field plants. Re-isolated strains shared phenotypic and molecular characteristics with the original P. brasiliense KNUB-06-21 strain. To our knowledge, ours is the first report of P. brasiliense causing melon soft rot disease in Korea.

Screening of Resistance Melon Germplasm to Phytotpthora Rot caused by Phytophthora Capsici

  • Kim, Min-Jeong;Shim, Chang-Ki;Kim, Yong-Ki;Jee, Hyeong-Jin;Hong, Sung-Jun;Park, Jong-Ho;Lee, Min-Ho;Han, Eun-Jung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.4
    • /
    • pp.389-396
    • /
    • 2012
  • Melon (Cucumis melo) is an annual herbaceous plant of the family Cucurbitaceae. Phytophthora rot, caused by Phytophthora capsici is a serious threat to cucurbits crops production as it directly infects the host plant, and it is difficult to control because of variable pathogenicity. This study investigated the resistance of 450 accessions of melon germplasm against Phytophthora rot by inoculating the seedlings with sporangial suspension ($10^{5\;or\;6}$ zoosporangia/ml) of P. capsici. Disease incidence of Phytophthora rot was observed on the melon germplasm at 7-day intervals for 35 days after inoculation. Susceptible melon germplasm showed either severe symptoms of stem and root rot or death of the whole plant. Twenty out of 450 tested accessions showed less than 20% disease incidence, of which five accessions showed a high level of resistance against Phytopthtora rot. Five resistant accessions, namely IT119813, IT138016, IT174911, IT174927, and IT906998, scored 0% disease incidence under high inoculum density of P. capsici ($10^6$ zoosporangia/mL). We recommend that these candidate melon germplasm may be used as genetic resources in the breeding of melon varieties resistant to Phytophthora rot.

Identification of Two New Races of Podosphaera xanthii Causing Powdery Mildew in Melon in South Korea

  • Hong, Ye-Ji;Hossain, Mohammad Rashed;Kim, Hoy-Taek;Park, Jong-In;Nou, Ill-Sup
    • The Plant Pathology Journal
    • /
    • v.34 no.3
    • /
    • pp.182-190
    • /
    • 2018
  • Powdery mildew caused by the obligate biotrophic fungus Podosphaera xanthii poses a serious threat to melon (Cucumis melo L.) production worldwide. Frequent occurrences of the disease in different regions of South Korea hints at the potential existence of several races which need to be identified. The races of five isolates collected from different powdery mildew affected regions were identified based on the pathogenicity tests of these isolates on eight known differential melon cultigens namely, SCNU1154, PMR 45, WMR 29, PMR 5, MR-1, PI124112, Edisto 47 and PI414723. None of the isolates have shown same disease responses to those of the known races tested in this study and in previous reports on these identical differential melon cultigens. This indicates that the tested uncharacterized isolates are new races. Among the isolates, the isolates from Hadong, Buyeo, Yeongam and Gokseong have shown same pathogenicity indicating the possibility of these isolates being one new race, for which we propose the name 'race KN1'. The isolate of Janghueng have also shown unique disease response in the tested differential melon cultigens and hence, we identified it as another new race with a proposed name 'race KN2'. Report of these new races will be helpful in taking effective control measures in prevalent regions and for future breeding programs aimed at developing varieties that are resistant to these race(s).

Fusarium Fruit Rot of Posthavest Oriental Melon (Cucumis melo L. var. makuwa Mak.) Caused by Fusarium spp. (Fusarium spp.에 의한 수확 후 참외 열매썩음병)

  • Kim, Jin-Won;Kim, Hyun-Jin
    • Research in Plant Disease
    • /
    • v.10 no.4
    • /
    • pp.260-267
    • /
    • 2004
  • Fusarium spp. were isolated from the postharvest fruit rot of oriental melon fruits at commercial fruit markets in Korea during 2001 to 2003. The decayed fruits were covered with the fungal mycelia and eventually soft rotted. The disease started at the fruit stalk area, the calyx end of the fruit and skin of fruit. As the disease advanced, white to pinkish mycelia covered with the surface of decayed fruit. The cultural and morphological characteristic of Fusarium spp. were compared with descriptions of those reported previously, and identified as Fusarium equiseti, F. graminearum, F. moniliforme, F. proliferatum, F. sambucinum, and F. semitectum. Pathogenicity of the isolates was proved by artificial wound and unwound inoculation onto the healthy fruits. Two days after inoculation, aerial mycelia were noticed on the wound inocultion region of the fruit and developed soft rot symptoms. Although Fusarium spp. causing fruit rot disease in oriental melon have been reported in Korea, identification of the those species was not described. Therefore, this is the first report of Fusarium spp. causing postharvest fruit rot on oriental melon in Korea.

Suppression of melon powdery mildew and tomato leaf mold disease by the antifungal activity of tea tree (Melaleuca alternifolia) essential oil

  • Lee, Mun Haeng;Oh, Sang-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1071-1081
    • /
    • 2020
  • Essential oils (EOs) have been shown to be plant-extracted antimicrobial agents. However, there are limited studies investigating the efficacy of EOs against pathogens. Among them, tea tree oil (TTO) is extracted from Melaleuca alternifolia, which is also used as an antifungal agent. In this study, the effect of TTO was investigated on the suppression of melon powdery mildew caused by Podosphaera xanthii and tomato leaf mold disease caused by Passalora fulva. Both powdery mildew and leaf mold diseases were significantly suppressed by a spray of TTO. Eighty percent of powdery mildew and 81% of leaf mold disease of the control value were suppressed by 0.5% TTO liquid, when sprayed 3 times every 7 days on the melon and tomato leaves. Inhibition of mycelial growth was also greatly affected by different concentrations of TTO against four different fungal pathogens. Ninety-eight percent of Pseudocercospora fuligena, 97% of P. fulva, 95% of Botrytis cinerea, and 94% of Phytophthora infestans mycelial growth were inhibited by 0.2% to 1.0% of TTO contained in plate media, respectively. However, phytotoxicity in plants by the TTO treatments was revealed when melon and tomato leaves were sprayed with a 1% and 2% concentration of TTO, respectively. Therefore, our findings show that TTO has high antifungal effects against various plant pathogens that occur during crop cultivation. We also suggest that when applying TTO to plant leaves, it is necessary to establish an accurate treatment concentration for different crops.

Some Characteristics of Melon necrotic spot virus-Me and Resistance Screen to the Virus in Melon Cultivars (멜론괴저반점바이러스-Me의 몇 가지 특성과 멜론 품종의 저항성 선발)

  • Choi, Gug-Seoun;Cho, Jeom-Deog;Chung, Bong-Nam;Cho, In-Sook;Kwon, Soon-Bae
    • Research in Plant Disease
    • /
    • v.16 no.3
    • /
    • pp.254-258
    • /
    • 2010
  • Melon necrotic spot virus (MNSV) is a very destructive disease to melon (Cucumis melo) plants. A MNSV was isolated from melon leaf showing necrotic spot symptoms at the plastic house in Naju, Korea in 2009. The isolate, designated as MNSV-Me, was identified and characterized by biological responses on several host plants, immuno captured RT-PCR and partial nucleotide sequencings of the genome. To evaluate MNSV-Me resistance in melon, thirty-five melon cultivars were mechanically inoculated on the cotyledon of the seedlings with the virus. MNSV-Me produced necrotic spots on the inoculated leaves of the all melon cultivars tested. Twenty-five cultivars were susceptible to the virus and they showed systemic necrotic spots on the leaves and/or necrosis longer than 3 cm in length on the stems within about forty days after inoculation. Five cultivars gave moderate resistance, no symptoms on the upper leaves but necrosis on the stem shorter than 3 cm in length. In an evaluation of MNSV-Me resistance in melon cultivars, 'Elstitan', 'Elsluxery', 'Betalichihage', 'Betalichi' and 'Womderfulhagae 1st' were found to have resistance by showing only faint necrosis on their stems.

Biological and Molecular Characterization of a Korean Isolate of Cucurbit aphidborne yellows virus Infecting Cucumis Species in Korea

  • Choi, Seung-Kook;Yoon, Ju-Yeon;Choi, Gug-Seoun
    • The Plant Pathology Journal
    • /
    • v.31 no.4
    • /
    • pp.371-378
    • /
    • 2015
  • Surveys of yellowing viruses in plastic tunnels and in open field crops of melon (Cucumis melo cultivar catalupo), oriental melon (C. melo cultivar oriental melon), and cucumber (C. sativus) were carried out in two melon-growing areas in 2014, Korea. Severe yellowing symptoms on older leaves of melon and chlorotic spots on younger leaves of melon were observed in the plastic tunnels. The symptoms were widespread and included initial chlorotic lesions followed by yellowing of whole leaves and thickening of older leaves. RT-PCR analysis using total RNA extracted from diseased leaves did not show any synthesized products for four cucurbit-infecting viruses; Beet pseudo-yellows virus, Cucumber mosaic virus, Cucurbit yellows stunting disorder virus, and Melon necrotic spot virus. Virus identification using RT-PCR showed Cucurbit aphid-borne yellows Virus (CABYV) was largely distributed in melon, oriental melon and cucumber. This result was verified by aphid (Aphis gossypii) transmission of CABYV. The complete coat protein (CP) gene amplified from melon was cloned and sequenced. The CP gene nucleotide and the deduced amino acid sequence comparisons as well as phylogenetic tree analysis of CABYV CPs showed that the CABYV isolates were undivided into subgroups. Although the low incidence of CABYV in infections to cucurbit crops in this survey, CABYV may become an important treat for cucurbit crops in many different regions in Korea, suggesting that CABYV should be taken into account in disease control of cucurbit crops in Korea.