• Title/Summary/Keyword: medium-voltage direct current

Search Result 23, Processing Time 0.016 seconds

Consolidation of marine clay using electrical vertical drains

  • Shang, J.Q.;Tang, Q.H.;Xu, Y.Q.
    • Geomechanics and Engineering
    • /
    • v.1 no.4
    • /
    • pp.275-289
    • /
    • 2009
  • Electroosmosis (EO) is the movement of water in a porous medium under the influence of a direct current (dc). In past decades, electro-osmosis has been successfully employed in many soil improvement and other geotechnical engineering projects. Metal electrodes, such as steel, copper and aluminum have been used traditionally to conduct current. The shortcoming of these electrodes is that they corrode easily during an EO treatment, which results in reduced effectiveness and environmental concerns. More recently, conductive polymers are developed to replace metal electrodes in EO treatment. Electrical vertical drainages (EVDs) are one of these products under trial. The goal of this study is to assess the performance of EVDs for soil improvement and to further understand the scientific principle of the EO process, including the voltage drop at the soil-EVD interface, electrical current density, polarity reversal, and changes in soil physico-chemical properties generated by electroosmosis. It is found from the study that after 19 days of EO treatment with a constant applied dc electric field intensity of 133 V/m, the soil's moisture content decreased by 28%, the shear strength and pre-consolidation pressure increased more than 400%. It is also found that the current density required triggering the water flow in the soil tested, the Korean Yulchon marine clay, is 0.7 $A/m^2$. The project demonstrates that EVDs can serve as both electrodes and drains for soil improvement in short term. However, the EVDs, as tested, are not suitable for polarity reversal in EO treatment and their service life is limited to only 15 days.

A Study on Economic Evaluation Modeling of MVDC Distribution System for Hosting Capacity of PV System (태양광전원 수용을 위한 MVDC 배전망의 경제성평가 모델링에 관한 연구)

  • Lee, Hu-Dong;Kim, Ki-Young;Kim, Mi-Sung;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.1-12
    • /
    • 2021
  • Technologies for an MVDC(medium voltage direct current) distribution system are being considered as an effective alternative to overcome the interconnection delay issues of PV systems. However, the implementation of a DC distribution system might lead to economic problems because of the development of DC devices. Therefore, this paper deals with the scale of a PV plant based on its capacity and proposes hosting-capacity models for PV systems to establish a network to evaluate the feasibility of an MVDC distribution system. The proposed models can be classified as AC and DC distribution systems by the power-supply method. PV systems with hundreds of MW, dozens of MW, and a few MW can be categorized as large-scale, medium-scale, and small-scale models, respectively. This paper also performed modeling for an economic evaluation of MVDC distribution system by considering both the cost of AC and DC network construction, converter replacement, operation, etc. The profit was composed of the SMP and REC rate of a PV plant. A simulation for economic evaluation was done for the MVDC distribution system using the present worth and equal-principal costs repayment method. The results confirmed that the proposed model is a useful tool to evaluate economic issues of a DC distribution system.

Studies on production of nuclear transplanted mouse embryos (핵이식 마우스 생산에 관한 연구)

  • Lee, Byeong-chun;Jo, Choong-ho;Hwang, Woo-suk
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.1
    • /
    • pp.151-169
    • /
    • 1993
  • The present study was carried out to investigate the best condition for nuclear-cytoplasm fusion and in vitro culture of nuclear transplanted embryos and to investigate the production of nuclear transplanted offsprings. The nuclei from 2-, 4- and 8-cell mouse embryos were transferred into enucleated 2-cell embryos, and the reconstituted embryos were submitted to direct current(DC) pulses at output voltage of 1.0, 1.5 and 2.0 kV/cm for 100, 150 and $200{\mu}$ sec to induce cell fusion. 1. The culture of intact or zona cut 2-cell embryos in the medium supplemented with cytochalasin B($5{\mu}g/m{\ell}$) and colcemide($0.1{\mu}g/m{\ell}$)for 30 and 60 minutes did not affect the development to later stage. 2. The in vitro developmental rates of group A(a nucleus from one of the blastomeres was removed) and B(electrofusion of group A) were significantly lower than that of control group(p<0.01). 3. When nuclear transplanted embryos were submitted to electrofusion, the significantly higher fusion rates of 2-cell donor nuclei were achieved at the electric field strength of DC 1.5kV/cm for 100 and $150{\mu}$ sec, DC 2.0 kV/cm for $100{\sim}200{\mu}$ sec than DC 1.0 kV/cm for 100 and $150{\mu}$ sec(p<0.01). The significantly higher fusion rates of 4-cell donor nuclei were achieved at DC 2.0 kV/cm for 100 and $150{\mu}$ sec than DC 1.0kV/cm for $100{\sim}200{\mu}$ sec(p<0.01). These fusion rates in 8-cell donor nuclei were 88.7~99.3%. 4. The developmental potency to blastocyst in 2- and 4-cell donor nuclei was significantly higher in DC 1.0 and 2.0 kV/cm for $100{\sim}200{\mu}$ sec treated group and DC 2.0 kV/cm for 150 and $200{\mu}$ sec treated group (p<0.01). The developmental potency to blastocyst in 8-cell donor nuclei was significantly higher in DC 2.0 kV/cm for $100{\mu}$ sec treated group than in DC 1.0 kV/cm for $100{\mu}$ sec treated group and DC 2.0 kV/cm for 150 and $200{\mu}$ sec treated group(p<001). 5. The developmental potency to blastocyst after nuclear transplantation was significantly higher in 2-cell donor nuclei than in 8-cell donor nuclei(p<0.01). 6. The success rate of nuclear injection into enucleated 2-cell embryos was significantly higher in 2-cell donor nuclei than in 4- or 8-cell donor nuclei(p<0.01). 7. The culture time taken for the nuclear transplanted 2-cell embryos to blastocyst stage was significantly longer in 2-cell donor nuclei than in 8-cell donor nuclei(p<0.01). 8. There was no significant difference in the developmental potency of nuclear transplanted embryos within the concentration of EGF at 0 to 15 ng per $m{\ell}$ of BMOC-3 solution. 9. The production rates of offspring after transfer of nuclear transplanted embryos to recipient mouse were significantly higher in 2-cell donor nuclei than in 8-cell donor nuclei(p<0.01).

  • PDF