• Title/Summary/Keyword: medium-chain-length poly (3-hydroxyalkanoates)

Search Result 5, Processing Time 0.02 seconds

Production of Medium-chain-length Poly (3-hydroxyalkanoates) by Pseudomonas sp. EML8 from Waste Frying Oil (Pseudomonas sp. EML8 균주를 이용한 폐식용류로부터 medium-chain-length poly(3-hydroxyalkanoates) 생합성)

  • Kim, Tae-Gyeong;Kim, Jong-Sik;Chung, Chung-Wook
    • Journal of Life Science
    • /
    • v.31 no.1
    • /
    • pp.90-99
    • /
    • 2021
  • In this study, to reduce the production cost of poly(3-hydroxyalkanoates) (PHA), optimal cell growth and PHA biosynthesis conditions of the isolated strain Pseudomonas sp. EML8 were established using waste frying oil (WFO) as the cheap carbon source. Gas chromatography (GC) and GC mass spectrometry analysis of the medium-chain-length PHA (mcl-PHAWFO) obtained by Pseudomonas sp. EML8 of WFO indicated that it was composed of 7.28 mol% 3-hydrxoyhexanoate, 39.04 mol% 3-hydroxyoctanoate, 37.11 mol% 3-hydroxydecanoate, and 16.58 mol% 3-hydroxvdodecanoate monomers. When Pseudomonas sp. EML8 were culture in flask, the maximum dry cell weight (DCW) and the mcl-PHAWFO yield (g/l) were showed under WFO (20 g/l), (NH4)2SO4 (0.5 g/l), pH 7, and 25℃ culture conditions. Based on this, the highest DCW, mcl-PHAWFO content, and mcl-PHAWFO yield from 3-l-jar fermentation was obtained after 48 hr. Similar results were obtained using 20 g/l of fresh frying oil (FFO) as a control carbon source. In this case, the DCW, the mcl-PHAFFO content, and the mcl-PHAFFO yields were 2.7 g/l, 62 wt%, and 1.6 g/l, respectively. Gel permeation chromatography analysis confirmed the average molecular weight of the mcl-PHAWFO and mcl-PHAFFO to be between 165-175 kDa. Thermogravimetric analysis showed decomposition temperature values of 260℃ and 274.7℃ for mcl-PHAWFO and mcl-PHAFFO, respectively. In conclusion, Pseudomonas sp. EML8 and WFO could be suggested as a new candidate and substrate for the industrial production of PHA.

Isolation of a Pseudomonas sp. Strain Exhibiting Unusual Behavior of Poly(3-hydroxyalkanoates) Biosynthesis and Characterization of Synthesized Polyesters

  • Chung, Chung-Wook;Kim, Yoon-Seok;Kim, Young-Baek;Bae, Kyung-Sook;Rhee, Young-Ha
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.847-853
    • /
    • 1999
  • A Pseudomonas sp. strain that is capable of utilizing dicarboxylic acids as a sole carbon source was isolated from activated sludge by using the enrichment culture technique. This organism accumulated polyhydroxyalkanoates (PHAs) with an unusual pattern of monomer units that depends on the carbon sources used. Polyhydroxybutyrate (PHB) homopolyester was synthesized from glucose or small $C_{-even}$ alkanoic acids, such as butyric acid and hexanoic acid. Accumulation of PHB homopolyester was also observed in the cells grown on $C_{-odd}$ dicarboxylic acids, such as heptanedioic acid and nonanedioic acid as the sole carbon sources. In contrast, a copolyester consisting of 6 mol% 3-hydroxybutyrate (3HB) and 94 mol% 3-hydroxyvalerate (3HV) was produced with a PHA content of as much as 36% of the cellular dry matter. This strain produced PHAs consisting both of the short-chain-length (SCL) and the medium-chain-length (MCL) 3-hydroxyacid units when heptanoic acid to undecanoic acid were fed as the sole carbon sources. Most interestingly, polyester consisting of significant amount of relevant fractions, 3HB, 3HV, and 3-hydroxyheptanoate (3HHp), was accumulated from heptanoic acid. According to solvent fractionation experiments, the polymer produced from heptanoic acid was a blend of poly(3HHp) and of a copolyester of 3HB, 3HV, and 3HHp units. The hexane soluble fractions contained only 3HHp units while the hexane-insoluble fractions contained 3HB and 3HV units with a small amount of 3HHp unit. The copolyester was an elastomer with unusual mechanical properties. The maximum elongation ratio of the copolyester was 460% with an ultimate strength of 10 MPa, which was very different from those of poly(3HB-co-3HV) copolyesters having similar compositions produced from other microorganisms.

  • PDF

Biosynthesis of medium-chain-length poly(3-hydroxyalkanoates) by metabolically engineered Escherichia coli strains

  • Park, Si-Jae;Lee, Sang-Yeop
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.735-738
    • /
    • 2001
  • Metabolically engineered Escherichia coli strains harboring a plasmid containing a novel artificial polyhydroxyalkanoate (PHA) operon consisting of the Aeromonas PHA biosynthesis related genes and Ralstonia eutropha reductase gene were developed for the production of poly(3-hydroxybutyrate-co-hydroxyhexanoate) [P(3HB-co-3HHx)] from dodecanoic acid. By applying stepwise reduction of dissolved oxygen concentration (DOC) during the fermentation, the final dry cell weight, PHA concentration, and PHA content of 79 g/L, 21.5 g/L, and 27.2 wt%, respectively, were obtained in 40.8 h, which resulted in the PHA productivity of 0.53 g/L/h. The 3HHx fraction slowly increased during the fed-batch culture to reach a final value of 10.8 mol%. The 3HHx fraction in the copolymer could be increased by three fold when the Aeromonas hydrophila orfl gene was co-expressed with the PHA biosynthesis genes.

  • PDF

High Cell Density Cultivation of Pseudomonas oleovorans for the Production of Poly(3-Hydroxyalkanoates)

  • Lee, Sang-Yup
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.1 no.1
    • /
    • pp.51-53
    • /
    • 1996
  • Fed-batch culture of Pseudomonas oleovorans was carried out for the production of medium-chain-length polyhydroxyalkanoates (MCL-PHAs) using octanoate as a carbon source. Octanoate and the salt solution containing ammounium sulfate and magnesium sulfate were intermittently fed in the course of fermentation. Cell mass and PHA concentrations of 42.8 and 16.8g/L, respectively, could be obtained in 40 h. The PHA content and the PHA productivity were 39.2% and 0.42 g PHA/L-h, respectively. The yields of cell mass and PHA were 0.71 g dry cell mass/g octanoate and 0.28g PHA/g octanoate, respectively. Therefore, octanoate can be used for the production of MCL-PHAs to a high concentration with high productivity.

  • PDF